• Title/Summary/Keyword: Surface Profile Prediction Model

Search Result 29, Processing Time 0.022 seconds

A Study On Prediction Model of Cutting Conditions for Draft Angle Control (마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구)

  • Cho, Ji-Hyun;Song, Byeong-Uk;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.

3-D Numerical Study on a Oblique Jet Impingement for Fluid flows and Heat Transfer Characteristics Using ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ Model (${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ 모델을 이용한 경사진 충돌제트의 유동장 및 열전달 특성에 대한 3차원 수치해석적 연구)

  • Choi, Bong-Jun;Lee, Jung-Hee;Choi, Young-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.789-794
    • /
    • 2000
  • The Paper studies the flow and heat transfer characteristics to a jet impinging at different oblique angles, to a plane surface by numerical methods. The flowfield and heat transfer rate associated with the oblique Impingement of an axisymmetric jet are of interest as a result of its presence in numerous technological Problems. For the computation of heat transfer rate, the standard ${\kappa}-{\varepsilon}$ and ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ turbulent model were adapted. The accuracy of the numerical calculations was compared with various experimental data reported in the literature. ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ model showed better agreement with experimental data than standard ${\kappa}-{\varepsilon}$ model in prediction of the turbulent intensity and the heat transfer rate. In the case of computation of flowfield, the study carries on the ${\alpha}=45$ deg, h/D=4.95. The jet Reynolds number based on the nozzle diameter(D), was 48,000. For the computation of heat transfer rate, the Re=20,000, the jet orifice-to-plate spacings(L/D) are 4, 6 and 10, and the angle between the axis of the jet orifice and the plate surface is set at 30, 45, 60, or 90 deg. For the smaller spacings, the near-peak Nusselt numbers are not significantly effected by the initial decreases in the Jet angle. The overall shape of the local Nusselt number x-axis profile is influenced by both the jet orifice-to-plate spacing and the jet angle.

  • PDF

A Study on the Evaluation Method of Subsidence Hazard by a Diffusion Equation and its Application (확산방정식을 이용한 침하 위험도 평가 기법 및 그 적용)

  • Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong;Kim, Taek-Kon;Park, Joon-Young
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.372-380
    • /
    • 2007
  • Surface damage due to subsidence is an inevitable consequence of underground mining, which may be immediate or delayed for many years. The surface damage due to abandoned underground mine is observed to be two subsidence types such as simple sinkhole or trough formation to a large scale sliding of the ground from with in the subsided area. An evaluation of the risk of a subsidence occurrence is vital in the areas affected by mining subsidence. For a subsidence prediction or a risk evaluation, there has been used various methods using empirical models, profile functions, influence functions and numerical models. In this study, a simple but efficient evaluation method of subsidence hazard is suggested, which is based on a diffusion theory and uses just information about geometry of caving and topography. The diffusion model has an analogous relationship with granular model which can explain a mechanism of subsidence. The diffusion model is applied for the evaluation of subsidence hazard in abandoned metal and coal mines. The model is found to be a simple but efficient tool because it needs information of geometry of caving and gangway and the topography.

A Case Study of WRF Simulation for Surface Maximum Wind Speed Estimation When the Typhoon Attack : Typhoons RUSA and MAEMI (태풍 내습 시 지상 최대풍 추정을 위한 WRF 수치모의 사례 연구 : 태풍 RUSA와 MAEMI를 대상으로)

  • Jung, Woo-Sik;Park, Jong-Kil;Kim, Eun-Byul;Lee, Bo-Ram
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.517-533
    • /
    • 2012
  • This study calculated wind speed at the height of 10 m using a disaster prediction model(Florida Public Hurricane Loss Model, FPHLM) that was developed and used in the United States. Using its distributions, a usable information of surface wind was produced for the purpose of disaster prevention when the typhoon attack. The advanced research version of the WRF (Weather Research and Forecasting) was used in this study, and two domains focusing on South Korea were determined through two-way nesting. A horizontal time series and vertical profile analysis were carried out to examine whether the model provided a resonable simulation, and the meteorological factors, including potential temperature, generally showed the similar distribution with observational data. We determined through comparison of observations that data taken at 700 hPa and used as input data to calculate wind speed at the height of 10 m for the actual terrain was suitable for the simulation. Using these results, the wind speed at the height of 10 m for the actual terrain was calculated and its distributions were shown. Thus, a stronger wind occurred in coastal areas compared to inland areas showing that coastal areas are more vulnerable to strong winds.

Stature estimation using the sacrum in a Thai population

  • Waratchaya Keereewan;Tawachai Monum;Sukon Prasitwattanaseree;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.259-267
    • /
    • 2023
  • Stature is an essential component of biological profile analysis since it determines an individual's physical identity. Long bone dimensions are generally used to estimate the stature of skeletal remains; however, non-long bones such as the sternum, cranium, and sacrum may be necessary for some forensic situations. This study aimed to generate a regression equation for stature estimation of the skeletal remains in the Thai population. Ten measurements of the sacrum were measured from 200 dry sacra. The results revealed that the maximum anterior breadth (MAB) provided the most accurate stature prediction model among males (correlation coefficient [r]=0.53), standard error of estimation (SEE=5.94 cm), and females (r=0.48, SEE=6.34 cm). For the multiple regression model, the best multiple regression models were stature equals 41.2+0.374 (right auricular surface height [RASH])+1.072 (anterior-posterior outer diameter of S1 vertebra corpus [APOD])+0.256 (dorsal height [DH])+0.417 (transverse inner diameter of S1 vertebra corpus [TranID])+0.2 (MAB) with a SEE of 6.42 cm for combined sex. For males, stature equals 63.639+0.478 (MAB)+0.299 (DH)+0.508 (APOD) with a SEE of 5.35, and stature equals 75.181+0.362 (MAB)+0.441 (RASH)+0.132 (maximum anterior height [MAH]) with a SEE of 5.88 cm for females. This study suggests that regression equations derived from the sacrum can be used to estimate the stature of the Thai population, especially when a long bone is unavailable.

A Modeling Study of Lake Thermal Dynamics and Turbid Current for an Impact Prediction of Dam Reconstruction (댐 재개발이 호수 수온 및 탁수 거동 변화에 미치는 영향 예측을 위한 모델 연구)

  • Jeong, Seon-A;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.813-821
    • /
    • 2005
  • This paper presents a modeling study of thermal dynamics and turbid current in the Obong Lake, Kangreung. The lake formed by the artificial dam in 1983 for agricultural water supply, is currently under consideration of reconstruction in order to expand the volume of reservoir for water supply and flood control in downstream area. The US Army Corps of Engineers' CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and water quality model, was applied to the lake after reconstruction as well as the present lake. The model calibration and verification were conducted against surface water levels and temperature of the lake measured during the years of 2001 and 2003. The model results showed a good agreement with fold measurements both in calibration and verification. Utilizing the validated model, an impact of dam reconstruction on vertical temperature and hydrodynamics were predicted. The model results showed that steep temperature gradient between epilimnion and hypolimnion would be formed during summer, along with extension of cold deep water after reconstruction. During winter and spring seasons, however, the vertical temperature profiles was predicted to be quite similar both before and after reconstruction. This results indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. From the examination of predicted water movements, it was noticed that the upstream turbid current would infiltrate into the interface between metalimnion and hypolimnion and then suspended solids would slowly settle down to the bottom before reconstruction. After reconstruction, however, it was shown that the upstream turbid current would stay longer in metalimnion with similar density due to strong stratification. The model also predicted that dam reconstruction would make suspended solids near the dam location significantly decrease.

Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea (수직 혼합 모수화 기법과 탁도에 따른 황해 수온 민감도 실험)

  • Kwak, Myeong-Taek;Seo, Gwang-Ho;Choi, Byoung-Ju;Kim, Chang-Sin;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.111-121
    • /
    • 2013
  • Accurate prediction of sea water temperature has been emphasized to make precise local weather forecast and to understand change of ecosystem. The Yellow Sea, which has turbid water and strong tidal current, is an unique shallow marginal sea. It is essential to include the effects of the turbidity and the strong tidal mixing for the realistic simulation of temperature distribution in the Yellow Sea. Evaluation of ocean circulation model response to vertical mixing scheme and turbidity is primary objective of this study. Three-dimensional ocean circulation model(Regional Ocean Modeling System) was used to perform numerical simulations. Mellor- Yamada level 2.5 closure (M-Y) and K-Profile Parameterization (KPP) scheme were selected for vertical mixing parameterization in this study. Effect of Jerlov water type 1, 3 and 5 was also evaluated. The simulated temperature distribution was compared with the observed data by National Fisheries Research and Development Institute to estimate model's response to turbidity and vertical mixing schemes in the Yellow Sea. Simulations with M-Y vertical mixing scheme produced relatively stronger vertical mixing and warmer bottom temperature than the observation. KPP scheme produced weaker vertical mixing and did not well reproduce tidal mixing front along the coast. However, KPP scheme keeps bottom temperature closer to the observation. Consequently, numerical ocean circulation simulations with M-Y vertical mixing scheme tends to produce well mixed vertical temperature structure and that with KPP vertical mixing scheme tends to make stratified vertical temperature structure. When Jerlov water type is higher, sea surface temperature is high and sea bottom temperature is low because downward shortwave radiation is almost absorbed near the sea surface.

A Comparison of Accuracy of the Ocean Thermal Environments Using the Daily Analysis Data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA (기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교)

  • Ko, Eun Byeol;Moon, Il-Ju;Jeong, Yeong Yun;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • In this study, the accuracy of ocean analysis data, which are produced from the Korea Meteorological Administration (KMA) Nucleus for European Modelling of the Ocean/Variational Data Assimilation (NEMO/NEMOVAR, hereafter NEMO) system and the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA, hereafter HYCOM) system, was evaluated using various oceanic observation data from March 2015 to February 2016. The evaluation was made for oceanic thermal environments in the tropical Pacific, the western North Pacific, and the Korean peninsula. NEMO generally outperformed HYCOM in the three regions. Particularly, in the tropical Pacific, the RMSEs (Root Mean Square Errors) of NEMO for both the sea surface temperature and vertical water temperature profile were about 50% smaller than those of HYCOM. In the western North Pacific, in which the observational data were not used for data assimilation, the RMSE of NEMO profiles up to 1000 m ($0.49^{\circ}C$) was much lower than that of HYCOM ($0.73^{\circ}C$). Around the Korean peninsula, the difference in RMSE between the two models was small (NEMO, $0.61^{\circ}C$; HYCOM, $0.72^{\circ}C$), in which their errors show relatively big in the winter and small in the summer. The differences reported here in the accuracy between NEMO and HYCOM for the thermal environments may be attributed to horizontal and vertical resolutions of the models, vertical coordinate and mixing scheme, data quality control system, data used for data assimilation, and atmosphere forcing. The present results can be used as a basic data to evaluate the accuracy of NEMO, before it becomes the operational model of the KMA providing real-time ocean analysis and prediction data.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.