• Title/Summary/Keyword: Surface Prediction

Search Result 1,960, Processing Time 0.03 seconds

Variation of Surface Crack Shape in Pressure Vessel Materials (압력용기 소재에서의 표면균열의 형상변화)

  • 허용학;이주진;이해무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.617-623
    • /
    • 1990
  • Cracks present in pressure vessels have been reported to be mostly semi-elliptic surface cracks. The fatigue crack growth rates(FCGR) of surface cracks in the pressure vessel materials, API5A-K55 and SPV 500, used in this study were showed to be different depending on the direction of propagation of the surface crack. An equation for the prediction of the shape change of the surface crack was obtained by combining the Paris' relations for each direction of surface crack extension and agreed well with the experimental data. And also FGGR in both materials were evaluated and prediction of the shape change of surface crack were made using averaged stress intensity factor.

Development of a Grid-Based Daily Land Surface Temperature Prediction Model considering the Effect of Mean Air Temperature and Vegetation (평균기온과 식생의 영향을 고려한 격자기반 일 지표토양온도 예측 모형 개발)

  • Choi, Chihyun;Choi, Daegyu;Choi, Hyun Il;Kim, Kyunghyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.137-147
    • /
    • 2012
  • Land surface temperature in ecohydrology is a variable that links surface structure to soil processes and yet its spatial prediction across landscapes with variable surface structure is poorly understood. And there are an insufficient number of soil temperature monitoring stations. In this study, a grid-based land surface temperature prediction model is proposed. Target sites are Andong and Namgang dam region. The proposed model is run in the following way. At first, geo-referenced site specific air temperatures are estimated using a kriging technique from data collected from 60 point weather stations. Then surface soil temperature is computed from the estimated geo-referenced site-specific air temperature and normalized difference vegetation index. After the model is calibrated with data collected from observed remote-sensed soil temperature, a soil temperature map is prepared based on the predictions of the model for each geo-referenced site. The daily and monthly simulated soil temperature shows that the proposed model is useful for reproducing observed soil temperature. Soil temperatures at 30 and 50 cm of soil depth are also well simulated.

A Road Surface Temperature Prediction Modeling for Road Weather Information System (도로기상정보체계 활성화를 위한 노면온도예측 모형 개발)

  • Yang, Chung-Heon;Park, Mun-Su;Yun, Deok-Geun
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2011
  • This study proposes a model for road surface temperature prediction on basis of the heat-energy balance equation between atmosphere and road surface. The overall model is consisted of two types of modules: 1) Canopy 1 is used to describe heat transfer between soil surface and atmosphere; and 2) Canopy 2 can reflect the characteristics of pavement type. Input data used in the model run is obtained from the Korea Meteorological For model validation, the observed and predicted surface temperature data are compared using data collected on MoonEui Bridge along CheongWon-Sangju Expressway, and the comparison is made on winter and other seasons separately. Analysis results show that average difference between two temperatures lies within ${\pm}2^{\circ}C$ which is considered as appropriate from a micrometeorology point of view. The model proposed in this paper can be adopted as a useful tool in practical applications for winter maintenance. This study being a fundamental research is anticipated to be a starting point for further development of robust surface road temperature prediction algorithms.

Prediction of Industrial Noise Propagation Subjected to Ground Effect (지표면의 반사특성을 고려한 환경소음 예측)

  • 한상보
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.329-335
    • /
    • 2001
  • The analytical model of the ground wave can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. The effects of the ground surface and the wind can be formulated in terms of the ground coefficient and the noise source parameter. Upward and downward conditions can also be addressed by considering the direction of the wind. The ground coefficient and the noise source parameter are estimated using the measured noise levels of two points under particular environmental condition, and the noise levels of arbitrary points under the same environmental condition can be estimated. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF

Growth Characteristics and Life Prediction of Single Surface Fatigue Crack with the Variation of crack Configuration Ratios (균열 형상비 변화에 따른 단일표면파로균열의 성장특성과 수명예측)

  • 서창민;서덕영;정정수
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.173-181
    • /
    • 1993
  • This work has been investigated the ralationship between single surface crack length and crack depth have influence on the fatigue life. The simulation based on experimental results of 2.25 Cr-1Mo steel at various crack configuration ratios has enabled successful prediction of fatigue life at room temperature. The effect of crack depth should be considered for predicting fatigue crack growth rates as well as that of surface crack length. It is also shwn that the crack growth mechanisms are in good agreement with expreimental data according to the interaction of crack length and crack depth.

  • PDF

Animated Quantile Plots for Evaluating Response Surface Designs (반응표면실험계획을 평가하기 위한 동적분위수그림)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.285-293
    • /
    • 2010
  • The traditional methods for evaluating response surface designs are alphabetic optimality criteria. These single-number criteria such as D-, A-, G- and V-optimality do not completely reflect the prediction variance characteristics of the design in question. Alternatives to single-numbers summaries include graphical displays of the prediction variance across the design regions. We can suggest the animated quantile plots as the animation of the quantile plots and use these animated quantile plots for comparing and evaluating response surface designs.

Evaluation of the Block Effects in Response Surface Designs with Random Block Effects over Cuboidal Regions

  • Park, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.741-757
    • /
    • 2000
  • In may experimental situations, whenever a block design is used, the block effect is usually considered to be fixed. There are, however, experimental situations in which it should be treated as random. The choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of he prediction variance even if the experimental runs re the same. Therefore, care should be exercised in the selection of blocks. In this paper, in the presence of a random block effect, we propose a graphical method or evaluating the effect of blocking in response surface designs using cuboidal regions. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout all experimental regions of interest when this region is cuboidal, and compare the block effects in the cases of the orthogonal and non-orthogonal block designs, respectively.

  • PDF

Form Error Prediction in Side Wall Milling Considering Tool Deflection (측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측)

  • 류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

Development of Evaluation and Prediction Model for Concrete High Speed Pumping (고강도콘크리트의 고속펌핑을 위한 압송성평가 및 예측모델에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-kyoo;Jeong, Woong-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.201-203
    • /
    • 2012
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for the evaluation of concrete pumping performance for high speed construction of super-tall building. So, this study focuses on quantitative evaluation of concrete fluid characteristics and surface friction resistance under the change of concrete mix proportion and pumping condition. In this study, we measured the rheology of concrete and pipe pressure and surface friction characteristics when pumping. And, relations between the rheology characteristics of concrete and pumping performance was investigated by experiment. As the result of the experiment, high regression between the surface friction and pressure gradient was confirmed. And, prediction model to evaluate the friction resistance coefficient and pipe pressure reduction coefficient was suggested.

  • PDF

Predictability of Sea Surface Temperature in the Northwestern Pacific simulated by an Ocean Mid-range Prediction System (OMIDAS): Seasonal Difference (북서태평양 중기해양예측모형(OMIDAS) 해면수온 예측성능: 계절적인 차이)

  • Jung, Heeseok;Kim, Yong Sun;Shin, Ho-Jeong;Jang, Chan Joo
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.53-63
    • /
    • 2021
  • Changes in a marine environment have a broad socioeconomic implication on fisheries and their relevant industries so that there has been a growing demand for the medium-range (months to years) prediction of the marine environment Using a medium-range ocean prediction model (Ocean Mid-range prediction System, OMIDAS) for the northwest Pacific, this study attempted to assess seasonal difference in the mid-range predictability of the sea surface temperature (SST), focusing on the Korea seas characterized as a complex marine system. A three-month re-forecast experiment was conducted for each of the four seasons in 2016 starting from January, forced with Climate Forecast System version 2 (CFSv2) forecast data. The assessment using relative root-mean-square-error was taken for the last month SST of each experiment. Compared to the CFSv2, the OMIDAS revealed a better prediction skill for the Korea seas SST, particularly in the Yellow sea mainly due to a more realistic representation of the topography and current systems. Seasonally, the OMIDAS showed better predictability in the warm seasons (spring and summer) than in the cold seasons (fall and winter), suggesting seasonal dependency in predictability of the Korea seas. In addition, the mid-range predictability for the Korea seas significantly varies depending on regions: the predictability was higher in the East Sea than in the Yellow Sea. The improvement in the seasonal predictability for the Korea seas by OMIDAS highlights the importance of a regional ocean modeling system for a medium-range marine prediction.