• 제목/요약/키워드: Surface Mass Injection

검색결과 66건 처리시간 0.028초

사출 성형 조건이 에프세타 렌즈의 유효면 특성에 미치는 영향 (Effect of Injection Molding Conditions of Effective Surface Properties of F-theta Lens)

  • 박용우;장기;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.20-27
    • /
    • 2021
  • The effective surface of lens was studied for injection molding process and to enable mass production of f-theta lens, which is the primary component of laser printers and laser scanning systems. Injection molding is an optimal method if f-theta lens is frequently used for the mass production of plastic lenses as an aspherical lens that requires ultra-precision. A uniform injection molding system should be maintained to produce high quality lenses. Additionally, to maintain these injection molding systems, various factors such as pressure, speed, temperature, mold and cooling should be considered. However, a lens with the optical characteristics of an f-theta lens can be obtained. The effects of melting and cooling of plastic resin on the effective surface of f-theta lenses and the numerous factors that affect the injection molding process were studied.

자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구 (Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface)

  • 서형준;국건;이준식;이상우
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

질량분사가 있는 덕트 난류유동의 LES 해석 (LES for Turbulent Duct Flow with Surface Mass Injection)

  • 김보훈;나양;이창진
    • 한국항공우주학회지
    • /
    • 제39권3호
    • /
    • pp.232-241
    • /
    • 2011
  • 하이브리드 로켓은 난류 산화제 유동과 고체 추진제의 기화로 인한 분사 유동 사이의 상호 작용에 의해 복잡한 형태의 혼합 전단층이 존재한다는 특별한 성질을 가지고 있다. 본 논문에서는 유동 간섭에 의해 표면에서 발생하는 진동 유동의 물리적 특성을 연구하기 위하여 압축성 효과를 고려한 질량분사가 있는 덕트 유동의 LES(Large Eddy Simulation) 해석을 수행하였다. 계산 결과에 따르면, 기화 질량이 분출됨에 따라 주유동방향 와류의 특성이 강해지고 국부적으로 발생하는 역류 현상을 근거로 벽면 근방에서 원주방향 와류가 생성됨을 확인하였다. 그리고 시간 특성을 갖고 나타나는 와류 흘림 현상은 혼합 전단층에 기인한 유동 불안정성에 의해 촉진되었으며, 분출유동에 의해 발달한 고유 진동 유동을 의미하는 압력 섭동의 특정 진동수가 $\omega$=8.8에서 검출됨을 확인하였다.

플라스틱 마이크로 채널 기판 사출성형 시 보압의 영향 (Effects of Packing Pressure and Time on Injection Molding of Plastic Micro-channel Plates)

  • 우상원;박시환
    • 한국생산제조학회지
    • /
    • 제25권3호
    • /
    • pp.224-229
    • /
    • 2016
  • Recently, polymeric micro-fluidic biochips with numerous micro patterns on the surface were fabricated by injection molding for realizing low-cost mass production of devices. To evaluate the effects of process parameters on large-scale micro-structure replication, a $50{\times}50mm^2$ tool insert with surface structures having a patterns of trapezoidal shapes (height: $30{\mu}m$) was employed. During injection molding, PMMA was used; packing phase parameters and mold temperature were investigated. The replicated surface textures were quantitatively characterized by confocal laser microscopy with 10-nm resolution. The degree of replication at low mold temperatures was found to be higher than that at high mold temperature at the beginning of the packing stage. Thereafter, the degree of replication increased to a greater extent at higher mold temperatures; application of higher mold temperatures improved the degree of replication.

초정밀 사출성형 금형의 마이크로 홈가공과 전사성 (Study of transcription ability of optic polymer and Micro-grooving machining of ultra-precision injection molding moulds)

  • 곽태수;오오모리 히토시
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.623-624
    • /
    • 2005
  • Micro injection molding is a branch of micro system technology and has been under development for the mass manufacture of micro parts. Enhanced technological products like micro optical devices are entering the market. This paper presents fundamental research on the injection molding technique in micro fabrication. In order to successful manufacturing of micro plastic parts, it is necessary to research for development of micro-injection machine, machining of micro mold, decision of optimum injection conditions and the research for polymer material. Therefore in this study, in order to machining of micro mold, a mold core with microscopic V-shaped groove was tooled by ultra-precise tooling machine. The transcription experiments with a polymer, PMMA resin on the surface of core with Ni plating were carried out and surface profile of injected parts was measured with AFM.

  • PDF

고온제트에 의한 금형표면 가열기법에서의 유량, 온도, 가열시간의 결정 (Determination of mass flow rate, jet temperature and heating time in mold surface heating technology using hot jet impingement)

  • 최성주;유영은;김선경
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.135-139
    • /
    • 2008
  • Development of surface heating technology using hot jet impingement onto mold inner surface for improvement of pattern transcription. This study is focused on how to control the parameters related to hot jet impingement. The mass flow rate, the jet temperature and the duration of the impingement are major parameters. The nozzle design and other geometric configurations also affect the heat transfer to the surface. In terms of heat transfer analysis, the most important number is the heat transfer coefficient, which is influenced by the mass flow rate, nozzle design, distance between the nozzle tip and the surface. In summary, several parametric studies using the developed model are conducted to investigate the effects of mass flow rate, jet temperature and Heating Time in Surface heating technology using hot jet impingement onto mold.

  • PDF

변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성 (Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole)

  • 이동호;김병기;조형희
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.

초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 요철이 설치된 유출면에서의 열/물질전달 특성 (Heat/Mass Transfer Characteristics on Rib-roughened Surface for Impingement/Effusion Cooling System with Initial Crossflow)

  • 이동호;남용우;조형희
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.338-348
    • /
    • 2004
  • The present study is conducted to investigate the effect of rib arrangements on an impingement/effusion cooling system with initial crossflow. To simulate the impingement/effusion cooling system, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of tile hole diameter. Initial crossflow passes between the injection and effusion plates, and the square ribs (3mm) are installed on the effusion plate. Both the injection and effusion hole diameters are 10mmand Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effects of rib arrangements, various rib arrangements, such as 90$^{\circ}$transverse and 45$^{\circ}$angled rib arrangements, are used. Also, the effects of flow rate ratio of crossflow to impinging jets are investigated. With the initial crossflow, locally low transfer regions are formed because the wall jets are swept away, and level of heat transfer rate get decreased with increasing flow rate of crossflow. When the ribs are installed on the effusion plate, the local distributions of heat/mass transfer coefficients around the effusion holes are changed. The local heat/mass transfer around the stagnation regions and the effusion holes are affected by the rib positions, angle of attack and rib spacing. For low blowing ratio, the ribs have adverse effects on heat/mass transfer, but for higher blowing ratios, higher and more uniform heat transfer coefficient distributions are obtained than the case without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. Average heat transfer coefficients with rib turbulators are approximately 10% higher than that without ribs, and the higher values are obtained with small pitch of ribs. However, the attack angle of the rib has little influence on the average heat/mass transfer.

막냉각홀 주위와 원형돌출봉 주위에서의 열(물질)전달의 측정과 해석 (Heat (mass) transfer measurement and analysis with flows around film cooling holes and circular cylinders)

  • 김병기;우성제;조형희
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1485-1495
    • /
    • 1997
  • The present study investigates heat/mass transfer around film cooling jets and circular cylinders to compare the characteristics of each other. Experiments are conducted to obtain the detailed heat/mass transfer coefficients of flat plate with injections through an array of holes and for flows around an array of protruding circular cylinders using the naphthalene sublimation technique. The inclination angles of cylinders are set to the same ones of jets; a, the angle between the jet and the surface is fixed at 30 deg. through the whole experiments and .betha., the angle between the projection of the jet on the surface and the direction of main stream is adjusted to 0 deg., 45 deg. and 90 deg. to investigate the effect of variation of injection angles. The influence of blowing rates of jets and those of cylinder length to diameter ratios are also investigated. The results indicate that the increase of angle .betha. influences the spanwise uniformity of heat/mass transfer remarkably for both jets and cylinders, but that variation of cylinder length to diameter ratios has weaker effects on heat/mass transfer coefficients than that of blowing rates.

입구 와류발생과 질량분사가 있는 연소실 내부유동의 LES 해석 (LES for Turbulent Duct Flow with Surface Mass Injection and Vortex Shedding)

  • 몬킨우;구희석;이창진
    • 한국항공우주학회지
    • /
    • 제40권9호
    • /
    • pp.745-751
    • /
    • 2012
  • 하이브리드 로켓은 축 방향의 산화제 유동과 고체 연료의 기화로 인한 벽면 분출 유동사이의 상호 간섭에 의해 복잡한 형태의 혼합 전단층이 존재한다. 연소실 입구에 링이 설치되어 있고 질량분사가 있는 실린더 유동에 대하여 압축성 효과를 고려한 LES(Large Eddy Simulation) 기법을 적용하여 수치계산을 수행하였다. 최근의 실험에 의하면 연료 중간에 링과 같은 다이아프램이 설치된 경우, 연소율의 증가가 관찰되었다. 계산 결과에 따르면, 축방향 유동과 벽면 분출 유동이 상호 간섭하여 발생하는 벽면 와류가 국부적인 연료 표면으로의 열전달을 증가시켜 실험에서 관찰되는 딤플이 생성되는 것을 확인하였다. 또한 연소실 입구에 설치된 링에 의하여 발생되는 와류는 벽면 와류가 보다 활발하게 생성되고 열전달과 혼합을 향상시키는 역할을 하며 이 때문에 연소율이 증가되는 것으로 보인다.