• Title/Summary/Keyword: Surface Heating Element

Search Result 115, Processing Time 0.025 seconds

고속전철용 디스크 브레이크의 열탄성 마멸에 관한 수치적 연구

  • 황준태;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.269-275
    • /
    • 1999
  • This paper presents the results of thermoelastic wear phenomena in ventilated disk brakes for a high-speed train using finite element method. The computed results show that the sinusoidal distortions due to non-uniform distributions of temperature profiles may lead to thermoelastic wears at the rubbing surface. This may decrease the life of a disk brake and produce micro-cracks, noise and squeals between two rubbing surfaces.

  • PDF

Simulation of the Thermal Performance on an Ondol House with Hot Water Heating in Consideration of Radiation Heat Transfer (복사열전달을 고려한 모형 온수온돌 주택 열성능 시뮬레이션)

  • Choi, Y.D.;Yoon, J.H.;Hong, J.K.;Lee, N.H.;Kang, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.295-305
    • /
    • 1993
  • Thermal performance of test cell of model hot water Ondol house was simulated by equivalence heat resistence and heat capacity method. In this method wall was replaced by two equivalence and one heat capacity. This method enables to simulate the variation of temperature of each element of model house. The effect of pipe diameter, pitch of pipe and with or without consideration of inter-radiation between wall surfaces on the energy consumption rate were investgated. Results show that radiations between the ground surface of room and wall surfaces contribute to the heating of room air by reducing the convection heat loss through the wall surfaces.

  • PDF

Shape Modelling of Levitated Molten Metal in Axisymmetric Induction Beating System (고주파 유도 가열 장치에서 피가열체의 형상 결정)

  • Suh, C.D.;Lee, H.B.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.954-956
    • /
    • 1993
  • This paper describes the process of levitation melting of metals in an axisymmetric induction heating system. This process has advantages of low heat losses, heating with short times and clean operating conditions. The shape of molten metal is determined using sensitivity analysis and optimization technique. Electromagnetic, gravitational and surface tension energies are considered, and these energies are used as an objective function in optimization process. Electromagnetic field are calculated using the finite element method. The fact that volume is constant in the process is also considered as an equality constraint.

  • PDF

Analytical Prediction of Heating Temperature to Manufacture Rotor with Shrink Fit for Ultra High Speed Motor According to Change Dimension of Rotor (초고속기용 열박음 로터 제작을 위한 로터의 치수에 따른 가열온도의 해석적 예측)

  • Hong, Do-Kwan;Woo, Byung-Chul;Jeong, Yeon-Ho;Koo, Dae-Hyun;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.963-968
    • /
    • 2009
  • This paper deals with shrink fit analysis of rotor by 2D cross-section, 2D axis-symmetry, and 3D FEM model. And this paper presents 2nd order approximation function of thermal expansion displacement by design variables (shape dimension, heating temperature, sleeve length, interference etc.), table of orthogonal array and RSM(response surface methodology). The possibility of the rotor with shrink fit is evaluated by thermal expansion displacement. If thermal expansion displacement is larger than interference, shrink fit enable to make the rotor. 2D axis-symmetry model and 3D model are more reasonable than 2D cross-section model, because stress and strain is different along length of shaft.

Designing Laser Pulses for Manipulating the Interior Structure of Solids (고체 내부의 구조적 변화를 위한 Laser Pulse의 설계)

  • Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.14-22
    • /
    • 1995
  • This paper is concerned with the design of optimal surface heating patterns that result in focusing acoustic energy inside a subsurface target volume at a specified target time. The surface of the solid is heated by an incident laser beam which gives rise to shear and compressional waves propagating into the solid. The optimal heating design process aims to achieve the desired energy focusing at the target with minimal laser power densities and minimal system disturbance away from the target. The optimality conditions are secured via the conjugated gradient method and by the finite element method along with using the half-space Green's function matrix. Good quality energy focusing is achived with the optimal designs reflecting the high directivity of the photothermally generated shear wave patterns.

  • PDF

The characteristics of polycrystalline 3C-SiC microhotplates for high temperature M/NEMS (고온 M/NEMS용 3C-SiC 마이크로 히터 특성)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.252-252
    • /
    • 2008
  • The microhotplates consisting of a Pt-ased heating element on AlN/poly 3C-SiC layers were fabricated. The microhotplate has a $600{\mu}m{\times}600{\mu}m$ square shaped membrane which made of $1{\mu}m$ thick ploycrystalline 3C-SiC suspended by four legs. 3C-SiC is known for excellent chemical durability, mechanical strength and sustaining of high temperature. The membrane is fabricated by surface micromachining using oxidized Si sacrificial layer. The Pt thin film is used for heating material and resist temperature sensor. The fabrication methodology allows intergration of an array of heating material and resist temperature detector. For reasons of a short response time and a high sensitivity a uniform temperature profile is desired. The dissipation of microhotplate was examined by a IR thermoviewer and the power consumption was measured. Measured and simulated results are compared and analyzed. Thermal characterization of the microhotplates shows that significant reduction in power consumption was achieved using suspended structure.

  • PDF

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.

A Study on Cold Forming of Curved Thick Plate by Reconfigurable Multi-Punch Dies (다점 펀치를 이용한 조선용 곡판 냉간 성형 방법 연구)

  • Ko, Y.H.;Han, M.S.;Han, J.M.;Kim, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.114-117
    • /
    • 2008
  • Curved thick plate forming in shipbuilding industry is currently performed by a thermal process, called as Line Heating by using gas flame torches. It was examined as an alternative way in this study to manufacture curved thick plates by the multi-punch die forming. Experiments and finite element analyses were conducted to evaluate the feasibility of the reconfigurable discrete die forming to the thick plates. Configuration of the multi-punch dies suitable for multi-curvature was investigated. As a result, single step forming by reconfigurable discrete die with scale factor improved formability.

  • PDF

The optimum Design of the Multi-flight Screw using Finite Element Analysis (다중날을 가진 스크류의 최적화 설계)

  • 최동열;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.248-256
    • /
    • 2001
  • Capacities of screw are pumping, steady flow of polymer melts, volumetric efficiency, steady volumetric throughout etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. Also the temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. by computation volumetric efficiency increases as rotating velocity increases, flight number increses, and decreases as friction coefficient increases. but volumetric throughout is different :s flight number increases with helix angle variability. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on thermo-mechanical characteristics of screw.

  • PDF

Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Beating (급속 가열에 의한 박육 사출성형의 유동특성 개선)

  • Kim, Byung;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.9-12
    • /
    • 2005
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filing difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation fur both the conventional molding and the RTR molding processes

  • PDF