• Title/Summary/Keyword: Surface Heat Treatment

Search Result 1,647, Processing Time 0.033 seconds

Study on Relation between Surface Roughness and Heat Absorption Capability of Materials for Solar Collector (태양열 집열기용 소재의 표면 거칠기와 흡열성능의 관계 연구)

  • Chun, Tae-Kyu;Ahn, Young-Chull
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.76-85
    • /
    • 2013
  • This study was carried out to investigate the relation between surface roughness and heat absorption capability of materials for solar collector. For this purpose, 3 kinds of materials (copper, aluminum, iron), 5 kinds of surface roughness (scrubber, alumina sand #80, #200, #400, glass bead) and 2 kinds of surface treatment (black chrome plating, copper black coating) were used for finding optimal conditions to apply solar collector. As the results, it was confirmed that the optimal relations between surface roughness and surface treatment as well as optimal materials were necessary. Further, heat absorption capability was showed good results in cases of copper materials, glass bead and black chrome plating.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

A Study on Nitrogen Permeation Heat Treatment of Super Martensitic Stainless Steel (수퍼 마르텐사이트계 스테인리스강의 질소침투 열처리)

  • Yoo, D.K.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • The phase changes, nitride precipitation and hardness variations of 14%Cr-6.7Ni-0.65Mo-0.26Nb-0.05V-0.03C super martensitic stainless steel were investigated after nitrogen permeation heat treatment at a temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The nitrogen-permeated surface layer was transformed into austenite. The rectangular type NbN, NbCrN precipitates and fine round type precipitate were coexisted in the surface austenite layer, while the interior region that was free from nitrogen permeation kept the martensitic phase. The hardness of surface austenite showed 280 Hv, while the interior region of martensite phase represented 340 Hv. When tempering the nitrogen-permeated steel at $450^{\circ}C$, a maximum hardness of 433 Hv was appeared, probably this is attributed to the secondary hardening effect of the precipitates. The nitrogen concentration decreased gradually with increasing depth below the surface after showing a maximum of 0.3% at the outmost surface. The strong affinity between nitrogen and Cr enabled the substitutional element Cr to move from interiors to the surface when nitrogen diffuse form surface to the interior. Corrosion resistance of nitrogen permeated steel was superior to that of solution-anneaed steel in the solution of 1N $H_2SO_4$.

Heat Treatment Using a Laser Beam or an Electron Beam (레이저 및 전자빔을 이용한 표면 열처리)

  • 김홍준;최우천;권영각
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.427-432
    • /
    • 1995
  • Surface heat treatment using a laser beam or an electron beam is studied through numerical analyses and experiments. For the surface heat treatment process, a theoretical model is developed to predict the effects of laser beam power, travel speed and properties of a workpiece on the depth and width of the heat affected zone(HAZ). The shape of HAZ and the hardness of heat-treated surface are experimentally obtained using an electron beam. Three materials(SS41, S45C and S55C) are selected as workpiece materials. The hardness of HAZ is increased up to 3 times for materials of a low carbon content. The results of the numerical analysis are compared with those of experiments. The comparison shows that the numerical model predicts larger depths and widths.

Characteristics of Metal Surface Heat Treatment by Diode Laser (다이오드 레이저를 이용한 금속 표면 열처리 특성)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kim, Gi-Man;Yang, Seung-Cheol;Kim, Jam-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.16-23
    • /
    • 2007
  • An experimental investigation with diode laser system was carried out to study the effect of surface heat treatment on the die materials(SM45C, SKD11, SK3). The surface heat treatment characteristics of the laser beam are evaluated using hardness tests, optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy(EDS). Results indicated that the beam size, focal length, feed rates are changed surface hardened characteristics. SM45C is higher hardness than other materials and composed to martensite grain at hardened zone, whereas other materials(SKD11, SK3)are low hardness than expected and composed to austenite and allayed martensite at hardened zone. The intensive X-ray diffraction patterns of (110)-(200)-(211) is detected hardened surface and the hardened surface distributed plenty of carbon density than metal zone.

  • PDF

Increase heat dissipation efficiency of Al plate according to surface roughness treatment by sandpaper or sandblast (사포, 샌드블라스트로 표면 거칠기 처리에 따른 알루미늄 판의 방열 효율 증대)

  • Lee, Dong-Hee;Lee, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.170-178
    • /
    • 2019
  • Recently, as the interest in energy savings has increased, there has been increasing use of LED lighting, which is an eco-friendly device that replaces high energy consuming fluorescent lamps and incandescent lamps. In the case of a high output LED, however, the life time is shortened due to deterioration caused by heat generation. As a solution to this problem, this paper evaluated the LED life extension effect by increasing the convective heat transfer coefficient of the heat sink surface for LED packaging. A roughing process was carried out using sandpaper and sand blasting. The changes in surface roughness and surface area after each surface treatment process were evaluated quantitatively and the convective heat transfer coefficient was measured. When sandblasting and sandpaper were used to roughen the aluminum surface, a higher convection heat transfer coefficient was obtained compared to the untreated case, and a high heat dissipation efficiency of 82.76% was obtained in the sandblast treatment. Therefore, it is expected that the application of heat dissipation to the heat sink will extend the lifetime of the LED significantly and economically by increasing the heat efficiency.

Effect of Washing and Subsequent Heat Treatment on Water Repellency of Silk Fabric Treated with Fluorocarbon Resins

  • Park, Hyei-Ran;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.173-179
    • /
    • 2012
  • Silk fabric treated with fluorocarbon resins (Asahi Guard AG-7005 and AG-E061) were washed and subsequently heat treated varying the washing cycles and the temperature. After the processing, the water and oil repellencies, and contact angle to water were evaluated. The water and oil repellencies decreased by the washing and recovered by following heat treatment. Also ESCA measurement was carried out to investigate the surface chemical composition of the treated fiber. The $F_1s$ intensity of the treated fabric decreased by the washing and recovered by the subsequent heat treatment. On the other hand, the $O_1s$ intensity increased by the washing and decreased by following heat treatment. From the results, it is clear that change of the water and oil repellencies of the silk fabric treated with fluorocarbon resin occurred by the washing and subsequent heat treatment. Considering a change of the water repellency of the silk fabric treated with fluorocarbon resin, it seems likely that the fluoroalkyl group of the fluorocarbon resin rotates from surface to inside of the fiber by the washing to adapt to the hydrophilic circumstance, and the orientation of the fluoroalkyl groups of the resin disturbed by the washing recovers the orientation to the fiber surface after the subsequent heat treatment.

Surface Modification by Heat-treatment of Propellant Waste Impregnated ACF

  • Yoon, Keun-Sig;Pyo, Dae-Ung;Lee, Young-Seak;Ryu, Seung-Kon;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.131-136
    • /
    • 2010
  • Propellant waste was impregnated on the surface of activated carbon fiber and heat-treated at different temperature to introduce newly developed functional groups on the ACF surface. Functional groups of nitrogen and oxygen such as pyridine, pyridone, pyrrol, lacton and carboxyl were newly introduced on the surface of modified activated carbon fiber. The porosity, specific surface area, and morphology of those modified ACFs were changed as increasing the heat-treated temperature from 200 to $500^{\circ}C$. The optimum heat-treatment temperature was suggested to $500^{\circ}C$, because lower temperature given rise to the decrease of specific surface area and higher temperature resulted in the decrease of weight loss. Propellant waste can be used as an useful surface modifier to porous carbons.

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

Enhancement of Hardness and Moderation of Surface Defects of 14K, 18K Yellow Gold Alloy by Heat Treatment (열처리에 의한 14K, 18K yellow gold alloy의 경도 향상 및 표면 결함 완화)

  • Ahn, Ji-Hyun;Seo, Jin-Kyo;Ahn, Yoeng-Gil;Park, Jong-Wang
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.86-90
    • /
    • 2010
  • In this study, we conducted heat treatment on 14K, 18K yellow gold alloy at various temperature conditions for improving their hardness and moderating their surface defects. Also after the heat treatment we used EPMA (Electron Probe Micro Analyzer), XRF (x-ray Fluorescence spectroscopy) for qualitative analysis and OM (optical microscope), SEM (scanning electron microscope) to investigate the changes of surface grain boundary. We used Vickers hardness tester to verify the changes of hardness. After the heat treatment, 14K, 18K gold alloys showed improved hardness and moderated surface defects at specific temperatures and duration.