• Title/Summary/Keyword: Surface Friction Welding

Search Result 84, Processing Time 0.03 seconds

Evaluation of Electrochemical Characteristic and Investigation on Optimum Condition in Friction Stir Welding for 6061-T6 Al Alloy (6061-T6 합금의 최적 마찰교반 용접 조건 규명 및 전기화학적 특성 평가)

  • Kim, Seong-Jong;Jang, Seok-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.341-350
    • /
    • 2008
  • In friction stir welding for 6061-T6 with various traveling speed and rotation speed conditions, the best mechanical characteristics presented in traveling speed of 507 mm/min and rotation speed of 1100RPM. The maximum tensile strength and yield strength increased with the increasing of traveling speed. The result of the electrochemical characteristic evaluation in friction stir welding at optimum conditions for 6061-T6 Al alloy presented a good characteristics compare to base metal.

Mechanical and Electrochemical Characteristics of Welding Parts Surface for Friction Stir Welded 5456-H116 Al Alloy (마찰교반용접한 5456-H116 알루미늄 합금 용접부 표면의 기계적 및 전기화학적 특성)

  • Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.156-162
    • /
    • 2008
  • Small FRP(fiber-reinforced polymer) fishing ships have numerous problems with the point of the environmental and recycling perspectives. In light of these aspects, aluminum can be used as a material for ship building. It is environmental friendly, easy to recycle, and provides a high added value to fishing boats. In this paper, we report on mechanical and electrochemical characteristics of welding parts for friction stir welded 5456-H116 Al alloy. In friction stir welded at various traveling speeds under the rotation speed of 500 RPM, the best characteristics presented in traveling speed of 15mm/min. The anodic polarizations of base metal and welding metal were observed tendency which current density from the open circuit potential suddenly increase. The cathodic polarization presented concentrated polarization caused by the dissolved oxygen reduction reaction and activation polarization caused by hydrogen generation. From result of Tafel analysis, the corrosion potential of 5456 alloy(Base metal) was lower than that of friction stir welded part, as were its corrosion current densities.

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Al/Mg Dissimilar Joints

  • Sundaram, Manickam;Visvalingam, Balasubramanian
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.23-30
    • /
    • 2016
  • This paper discusses the optimization of friction stir spot welding (FSSW) process parameters for joining Aluminum alloy (AA6061-T6) with Magnesium alloy (AZ31B) sheets. Prior to optimization an empirical relationship was developed to predict the Tensile Shear Fracture Load (TSFL) incorporating the four most important FSSW parameters, i.e., tool rotational speed, plunge rate, dwell time and tool diameter ratio, using response surface methodology (RSM). The experiments were conducted based on four factor, five levels central composite rotatable design (CCD) matrix. The maximum TSFL obtained was 3.61kN, with the tool rotation of 1000 rpm, plunge rate of 16 mm/min, dwell time of 5 sec and tool diameter ratio of 2.5.

A study on welding structure and thermal behavior in friction welding of austenitic stainless steel (오스테나이트계 스테인레스강의 마찰압접시 압접조직과 열적거동에 관한 연구)

  • 강춘식;정태용
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.43-53
    • /
    • 1990
  • The transient temperature distribution in the continuous friction welding 304 stainless steel bars is investigated by experimental and analytical methods. It is calculated by F.D.M. (finite difference method). The heating pressure, the rotational speed and friction coefficient obtained from experiment are used to determine the heat input at the contacting surface. Thermal properties of the workpiece are the function of temperature. The calculated temperature is well coincided with the measured value. The grain size at weld interface is extremely small due to the severe plastic deformation at high temperature, and result of this refined zone reveals higher hardness value. Because the HAZ is very narror about 2-3 mm, welding defects do not occure.

  • PDF

A Study on Mechanical Properties According to the Radius Change Position of Outer Circumference in A2024-T4 Friction Welding (A2024-T4 마찰용접(摩擦熔接)시 반경 변화에 따른 기계적(機械的) 성질(性質) 연구(硏究))

  • Park, Keun-Hyung;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.109-116
    • /
    • 2007
  • The present study examined mechanical properties according to the change of outer circumference in the friction welding of A2024-T4 stock, which is used much as aircraft structure, truck wheel, stainless materials and A2024-T4 stock with 10 hollow at the center. Welding conditions were fixed at RPM 2,000rpm, friction pressure of 50MPa, friction time of 1.5sec, upset pressure of 120MPa and upset time of 2.0 seconds. From the result of this study were drawn conclusions as follows : According to the result of a tensile strength test, the solid shaft showed linear increase of tensile strength with the change of outer circumference, the hollow shaft showed maximum tensile stength when the length (L) was 2mm and decrease of tensile strength with the change of outer circumference, hardness appeared to increase and then decrease for welding interface, and it showed maximum hardness 155Hv at L=5mm of the solid shaft. Bending strength increased linearly far change of the distance (L) of outer circumference in the solid shaft and then decreased linearly in the hollow shaft. the result of examining tissue, the tissue grew finer around the welding interface and divided the basic material and the welding surface.

Study on Optimization of Dissimilar Friction Welding of Nuclear Power Plant Materials and Its Real Time AE Evaluation (원자력 발전소용 이종재 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구)

  • 권상우;오세규;유인종;황성필;공유식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.42-46
    • /
    • 2000
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high sts good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material who alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the develop optimizing of friction welding with more reliability and more applicabililty but also the development of in-process rear quility(such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear component of Cu-1Cr-0.1Zr alloy to STS316L steel were performed.

  • PDF

Evaluation of Mechanical Characteristic and Investigation on Optimum Condition in Friction Stir Processing for 5456-H116 Al Alloy (알루미늄 5456-H116 합금에 대하여 최적 마찰교반 프로세싱 조건 규명 및 기계적 특성 평가)

  • Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • Friction stir welding(FSW) was developed as a new solid state welding technique by The Welding Institute (TWI). On the basis of FSW, a new processing technique, friction stir processing (FSP), has recently been developed. FSP has been applied to cast aluminum alloy to modify the microstructure to enhance mechanical characteristic. FSP is a new solid state processing technique for microstructural modification in metallic materials. FSP has been applied to aluminum alloy to modify the microstructure to enhance mechanical characteristic. In this study, we investigated optimum condition friction stir processing with the evaluation of mechanical characteristic for 5456-H116 Al alloy. The mechanical characteristics of base metal similar with in 15 mm/min, 250 RPM with full screw probe. This condition is concluded that optimum friction stir processing condition. The result of this investigation will be able to application for repair of welding part for aluminum ship.

Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

  • Paik, Jeom-Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.39-49
    • /
    • 2009
  • The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW), laser welding and friction stir welding (FSW), FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base) alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009), jointly funded by its member agencies.

Friction spot joining of dissimilar materials (마찰교반점용접을 이용한 이종재료의 접합)

  • Cheon, Chang-Geun;Kim, Teuk-Gi;Rajesh, S.R.;Kim, Heung-Ju;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.155-157
    • /
    • 2007
  • The Friction spot dissimilar welding of galvanized steel/Al6061-T6 was performed to investigate the mechanical characteristics of the joints. The presence of thin film of aluminum oxide on the surface and melting of zinc in the coating, made substandard joint characteristics for dissimilar Friction spot joining(FSJ) performed with out removing the coating. Where as, for dissimilar FSJ of galvanized steel/Al6061-T6 after removing the coating, superior agitation and welding quality has been obtained for a configuration of galvanized steel as the upper plate and Al6061-T6 as lower plate. The results from tensile tests and microscopic examination for various combinations of the welding parameters have been presented.

  • PDF

Defect Detection in Friction Stir Welding by Online Infrared Thermography

  • Kryukov, Igor;Hartmann, Michael;Bohm, Stefan;Mund, Malte;Dilger, Klaus;Fischer, Fabian
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2014
  • Friction Stir Welding (FSW) is a complex process with several mutually interdependent parameters. A slight difference from known settings may lead to imperfections in the stirred zone. These inhomogeneities affect on the mechanical properties of the FSWed joints. In order to prevent the failure of the welded joint it is necessary to detect the most critical defects non-destructive. Especially critical defects are wormhole and lack of penetration (LOP), because of the difficulty of detection. Online thermography is used process-accompanying for defect detecting. A thermographic camera with a fixed position relating to the welding tool measures the heating-up and the cool down of the welding process. Lap joints with sound weld seam surfaces are manufactured and monitored. Different methods of evaluation of heat distribution and intensity profiles are introduced. It can be demonstrated, that it is possible to detect wormhole and lack of penetration as well as surface defects by analyzing the welding and the cooling process of friction stir welding by passive online thermography measurement. Effects of these defects on mechanical properties are shown by tensile testing.