• Title/Summary/Keyword: Surface Fitting

Search Result 394, Processing Time 0.024 seconds

Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD) (직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석)

  • Eum, Su-Hwan;Kim, Albert S.;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.236-246
    • /
    • 2011
  • In this study, we used prepared a cylindrical module consisting 100 hollow fibers of commercialized (hydrophobic) polyethylene membrane of $0.4{\mu}m$ pore size and systematically studied performance of direct contact membrane distillation (DCMD) and sweep gas membrane distillation (SGMD) in terms of variation of permeate flux and salt rejection with respect to temperature drop across the membrane, salt concentrations in feed, and flow rates of cooling water and sweep gas. SGMD was regarded as DCMD with a sweep gas layer between permeate-side membrane surface and cooling water. Sweep gas flow decreases the permeate flux from that of DCMD by providing an additional gas-layer resistance. We compared DCMD and SGMD performance by using mass balance with a fitting parameter (${\omega}$), indicating fraction of permeate flow rate.

Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting) (변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발)

  • Lee, Hoochang;Go, Jaedoo;Yoo, Kwangho;Kim, Wanil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.

Stability Analysis of Concrete Plugs Using a 3-D Failure Criterion (3차원 파괴조건식을 이용한 콘크리트 플러그의 안전도 평가)

  • Lee, Youn-Kyou;Song, Won-Kyoung;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.526-535
    • /
    • 2011
  • A new failure criterion for concrete, which takes into account the effect of the intermediate principal stress, is proposed. The new criterion, which takes the advantages from both the Mohr-Coulomb and the Willam-Warnke criteria, is linear in the meridian section, while its octahedral section is always smooth and convex. Fitting the triaxial compression data with the proposed criterion shows the high performance of the new criterion. A new formula for the factor of safety of concrete is defined based on the new failure criterion and it is employed in the stability analysis of the concrete plugs installed in the pilot plant. The new formula for the factor of safety measures the degree of closeness of a stress state to the failure surface in the octahedral plane. Finally, 3-D finite element analyses of pilot plant were carried out to obtain the stress distributions in the plugs. Then, the stress distributions are converted to those of factor of safety by use of the proposed formula. Based on the distribution of factor of safety in the concrete plugs, the stability of the tapered and wedge-shaped plugs is evaluated.

Effect of Substrate Bias Voltage on DLC Films Prepared by ECR-PECVD (ECR-PECVD 방법으로 제작된 DLC 박막의 기판 Bias 전압 효과)

  • 손영호;정우철;정재인;박노길;김인수;김기홍;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.328-334
    • /
    • 2000
  • DLC (Diamond-Like Carbon) films were deposited by ECR-PECVD (electron cyclotron resonance plasma-enhanced chemical vapor deposition) method with the variation of substrate bias voltage under the others are constant except it. We have investigated the ion bombardment effect induced by the substrate bias voltage on films during the deposition of film. The characteristics of the film were analyzed using the Dektak surface profiler, SEM, FTIR spectroscopy, Raman spectroscopy and Nano Indentation tester. FTIR spectroscopy analysis shows that the amount of dehydrogenation in films was increased with the increase of substrate bias voltage and films thickness was decreased. Raman scattering analysis shows that integrated intensity ratio $(I_D /I_G)$ of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased. From these results, it can be concluded that films deposited at this experimental have the enhanced characteristics of DLC because of the ion bombardment effect on films during the deposition of film.

  • PDF

Comparative evaluation of sodium hypochlorite and microwave disinfection on dimensional stability of denture bases

  • Nirale, Rutuja Madhukarrao;Thombre, Ram;Kubasad, Girish
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • PURPOSE. To compare the effect of sodium hypochlorite and microwave disinfection on the dimensional stability of denture bases without and with relining. MATERIALS AND METHODS. A brass die was prepared by simulating an edentulous maxillary arch. It was used to fabricate 1.5 mm and 3 mm of thickness denture bases (n = 40). The 1.5 mm of thickness-specimens (n = 20) were relined with 1.5 mm of autopolymerizing relining resin. Five holes were prepared over crest of ridge of brass die with intimately fitting stainless steel pins which were transferred to the intaglio surface of specimens during fabrication of denture bases. For calculation of dimensional changes in denture bases, differences between the baseline area before and after disinfection of the specimens were used. The denture bases without and with relining were divided into 2 groups (each n =20). Data were analyzed using student paired 't'and unpaired 't'test. RESULTS. Microwave disinfection produces significant shrinkage in both denture bases without relining (t =17.16; P<.001) and with relining (t = 14.9; P<.001). Denture bases without relining showed more shrinkage when compared with relined denture bases after microwave disinfection (t = 6.09; P<.001). The changes in dimensional stability after sodium hypochlorite disinfection were not significant for both denture bases without relining (t = 2.19; P=.056) and denture bases with relining (t = 2.17; P=.058). CONCLUSION. Microwave disinfection leads to increased shrinkage of denture bases without and with relining. Chemical disinfection with sodium hypochlorite seems to be a safer method of disinfection with regards to physical properties such as changes in dimensional stability.

Photoluminescence of Nanocrystalline CdS Thin Films Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.170-173
    • /
    • 2010
  • Nanocrystalline cadmium sulfide (CdS) thin films were prepared using chemical bath deposition in a solution bath containing $CdSO_4$, $SC(NH_2)_2$, and $NH_4OH$. The CdS thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). The as-deposited CdS thin film prepared at $80^{\circ}C$ for 60 min had a cubic phase with homogeneous and small grains. In the PL spectrum of the 2,900 A-thick CdS thin film, the broad red band around 1.7 eV and the broad high-energy band around 2.7 eV are attributed to the S vacancy and the band-to-band transition, respectively. As the deposition time increases to over 90 min, the PL intensity from the band-to-band transition significantly increases. The temperature dependence of the PL intensity for the CdS thin films was studied from 16 to 300 K. The $E_A$ and $E_B$ activation energies are obtained by fitting the temperature dependence of the PL intensity. The $E_A$ and $E_B$ are caused by the deep trap and shallow surface traps, respectively. From the FTIR analysis of the CdS thin films, a broad absorption band of the OH stretching vibration in the range $3,000-3,600\;cm^{-1}$ and the peak of the CN stretching vibration at $2,000\;cm^{-1}$ were found.

The Study of Synthetic Material Bush (Railko Bush) Application on Large Container Vessel (대형 컨테이너 선박의 합성수지계열 RAILKO BUSH 적용 연구)

  • Lim, Jae-Hun;Park, Kun-Woo;Kim, Kyung-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.46-53
    • /
    • 2008
  • Recently, the synthetic material stern tube bush has been applied by ship owner's requirement because the synthetic material has a merit. That is to say, when stern tube seal is damaged and sea water comes into stern tube, it can work without problem because of water lubricating property. However, the material also has a demerit of temperature rise problem when some factors meets on synthetic material, for example, not sufficient lubrication oil supply and not proper shaft alignment and so on. As known in the world, the RAILKO bush is rampant for synthetic material by some ship owner because of the above mentioned reason. However, the bush has several accidents on large container vessel. Unfortunately or fortunately our yard has a chance to apply the RAILKO bush owing to requirement of specific ship owner. Therefore, it is much more required to approach the accurate shaft alignment analysis. In line with this reason, we had a shaft alignment calculation considering hull deformation and hull flexibility (hull stiffness). Also, in the calculation, we had considered dynamic condition which is reflected he propeller thrust forces and moments and oil film stiffness on the shaft alignment calculation. According to he shaft alignment calculation, bearing slope was applied on the tern tube bush and was measured. The RAILKO bush should be applied the running in procedure according to maker's recommendation for performing the oil film on the bush surface. Finally, the vessels were delivered successfully without any problem with AILKO bush as shown on his paper.

  • PDF

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy (XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

Biomechanical Analysis of Trail Running Shoes Applied to Korean Shoe-Lasts (한국인 족형을 적용한 트레일 러닝화의 생체역학적 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;An, Chang-Shin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 2010
  • The purpose of this study was to analyze biomechanical factors of trail running shoes applied to korean shoe-lasts. 10 healthy male subjects with an average age of 37.2 years(SD=8.28), weight of 69.6 kg(SD=10.56) and a height of 171 cm(SD=4.93) were recruited for this study. Ten males walked on a treadmill wearing four different shoes. Foot pressure data was collected using a Pedar-X mobile system(Novel Gmbh., Germany) operating at the 1000 Hz. Surface EMG signals for tibialis anterior, gastrocnemius, vastus lateralis and biceps femoris were acquired at 1000 Hz using Noraxon TeleMyo DTS system(Noraxon Inc., USA). Foot pressure and leg muscle fatigue were measured and calculated during walking. The results are as follows: After walking 60 minutes, Type A showed a lower MPF. MPF values were significantly different from each muscle(p<.05). Therefore, Type A shoe might decrease muscle fatigue in the legs while walking. In addition, Type It showed that Type A shoe has the highest contact area and the lowest maximum pressure. As a result of the analysis, Trail running shoes will use a new design to reduce muscle fatigue and are expected to increase comfort and fitting.

Sampling-based Control of SAR System Mounted on A Simple Manipulator (간단한 기구부와 결합한 공간증강현실 시스템의 샘플 기반 제어 방법)

  • Lee, Ahyun;Lee, Joo-Ho;Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.356-367
    • /
    • 2014
  • A robotic sapatial augmented reality (RSAR) system, which combines robotic components with projector-based AR technique, is unique in its ability to expand the user interaction area by dynamically changing the position and orientation of a projector-camera unit (PCU). For a moving PCU mounted on a conventional robotic device, we can compute its extrinsic parameters using a robot kinematics method assuming a link and joint geometry is available. In a RSAR system based on user-created robot (UCR), however, it is difficult to calibrate or measure the geometric configuration, which limits to apply a conventional kinematics method. In this paper, we propose a data-driven kinematics control method for a UCR-based RSAR system. The proposed method utilized a pre-sampled data set of camera calibration acquired at sufficient instances of kinematics configurations in fixed joint domains. Then, the sampled set is compactly represented as a set of B-spline surfaces. The proposed method have merits in two folds. First, it does not require any kinematics model such as a link length or joint orientation. Secondly, the computation is simple since it just evaluates a several polynomials rather than relying on Jacobian computation. We describe the proposed method and demonstrates the results for an experimental RSAR system with a PCU on a simple pan-tilt arm.