• Title/Summary/Keyword: Surface Expansion

Search Result 1,004, Processing Time 0.03 seconds

Basic study on selecting mold transfer paper for gloss exposed mass concrete (광택 노출콘크리트용 거푸집 전사지 선정에 관한 기초적 연구)

  • Lee, Jea-Hyeon;Kim, Min-Sang;Baek, Cheol;Kyung, Yeong-Hyeok;Han, In-Deok;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.15-16
    • /
    • 2016
  • Ways to efficiently manufacture gloss exposed mass concrete at an inexpensive price, in other words, ways to paste transparent transfer paper onto the surface of a combined mold has been designated as New Technology Article 191 by the Ministry of Land, Infrastructure and Transport. But if the difference in the coefficient of linear expansion between the mold's and transfer paper's material causes temperature to rise or fall, a wrinkly surface can appear. Therefore this study, by experimentally comparing the deformation characteristics between the mold material and transfer paper material upon changes in temperature, seeks to serve as a basic reference point for selecting the optimal transfer paper for different mold types. Study results revealed that for molds, polyester resin transfer paper is optimal, and for aluminum molds, acrylic resin transfer paper is.

  • PDF

Shrinkage rate and Structure analysis of IV according to Thermal deterioration (열열화 온도에 따른 IV의 수축률 및 조직분석)

  • Choi, Chung-Seog;Kim, Hyung-Rae;Song, Kil-Mok;Kim, Hyang-Kon;Kim, Dong-Ook;Kim, Dong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1416-1418
    • /
    • 2002
  • In order to examine the thermal properties of the wire materials, we analyzed the shrinkage, the expansion and the form transformation, the surface structure according to the thermal deterioration temperature through the testing method for a heating shrinkage of Korean Industrial Standard(KS C 3004). For IV(600V grade polyvinyl chloride insulated wires), we measured the shrinkage and the expansion rate, analyzed the surface structure using SEM(Scanning Electron Microscope). In the result of this experiment, the shrinkage rate of IV 2.0mm covering was high in comparison with other wires. As the deterioration temperature rises gradually, the covering is molten and harden.

  • PDF

Edge Flame : Why Is It So Hot in Combustion?

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.19-27
    • /
    • 2000
  • A turbulent combustion model, based on edge flame dynamics, is discussed in order to predict global extinction of turbulent flames. The model is applicable to the broken flamelet regime of turbulent combustion, in which global extinction of turbulent flame is achieved by gradual expansion of flame holes. The edge flame dynamics is the key mechanism to describe the flame hole expansion or contraction. For flames with Lewis numbers near unity, there is a $Damk{\ddot{o}}hler$ number, namely the crossover $Damk{\ddot{o}}hler$ number, at which edge flame changes its direction of propagation. The parametric region between the quasi-steady extinction condition and the edge-flame crossover condition is a metastable region, in that flames without edge can stay in their burning states while flames with edge have to retract to expand quenching holes. Using the above properties of edge flame, Hartley and Dold proposed a Lagrangian hole dynamics, which allows us to simulate transient variation of quenching holes. In their model, each stoichiometric surface is subjected to a random sequence of scalar dissipation rate compatible to the equilibrium turbulence. Then, each stoichiometric surface will evolve, according to the combustion map, dependent on the scalar dissipation rate and existence of flame edge, If all the burning surfaces are annihilated, the event can be declared as a global extinction. The consequence obtained from the above model also can be used as a subgrid model to determine local extinction occurring in a calculation grid.

  • PDF

Study on Thermal behavior of Flexible CIGS Thin Film Solar Cell on Fe-Ni Alloy Substrates using Finite Element Analysis (유한요소해석을 이용한 CIGS 박막 태양전지용 Fe-Ni 합금 기판재 열적 거동 연구)

  • Han, Yun-Ho;Lee, Min-Su;Kim, Dong-Hwan;Yim, Tai-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.23-26
    • /
    • 2015
  • What causes the transformation of a solar cell is the behavior difference of thermal expansion occurred between the substrate and the layer of semiconductor used in the solar cell. Therefore, the substrate has to possess a behavior of thermal expansion that is similar with that of semiconductor layer. This study employed electroforming to manufacture Fe-Ni alloy materials of different compositions. To verify the result from a finite element analysis, a two-dimensional Mo substrate was calculated and its verification experiment was conducted. The absolute values from the finite element analysis of Mo/substrate structure and its verification experiment showed a difference. However, the size of residual stress of individual substrate compositions had a similar tendency. Two-dimensional CIGS/Mo/$SiO_2$/substrate was modeled. Looking into the residual stress of CIGS layer occurred while the temperature declined from $550^{\circ}C$ to room temperature, the smallest residual stress was found with the use of Fe-52 wt%Ni substrate material.

Rapid Fabrication of Micro Lens Array by 355nm UV Laser Irradiation (355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작)

  • Je, Soon-Kyu;Park, Kang-Su;Oh, Jae-Yong;Kim, Kwang-Ryul;Park, Sang-Hoo;Go, Cheong-Sang;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.26-32
    • /
    • 2008
  • Micro lens array (MLA) is widely used in information technology (IT) industry fields, for examples such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method, micro etching, electroplating, micromachining and laser local heating. Laser local thermal-expansion (LLTE) technology demonstrates the formation of microdots on the surface of polymer substrate, in this paper. We have also investigated the new direct fabrication method of placing the MLA on the surface of a SU-8 photoresist layer. We have obtained the 3D shape of the micro lens processed by UV laser irradiation and have experimentally verified the optimal process conditions.

  • PDF

The Effect of Addition of Level of Red Ginseng Powder on Yackwa Quality and During Storage (홍삼분말이 첨가된 약과의 품질과 저장성에 관한 연구)

  • Hyun, Ji-Soo;Kim, Myoung-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.3
    • /
    • pp.352-359
    • /
    • 2005
  • The red ginseng powder was added to Yackwa dough as ratio to 0%, 2%, 4%, 6% and 8%, respectively to know effect of red ginseng powder on Yackwa quality and preservation. The expansion, color, texture and preference characters were investigated at 0,2 and 4 weeks, respectively. The peroxide and acid value were also measured. The 4% addition increased greatly expansion rate. In color test, L value lowed at addition of red ginseng powder and at long storage period. the b value lowed as the addition was increased, but a value was not affected by the addition of red ginseng powder. In mechanical texture test, addition of red ginseng powder had a tendency to show low cohessivness, springness, gumminess while hardness increased. The springness, brittleness and cohessivness decreased while hardness increased at long storage period. In sensory test, surface color, bitterness and red ginseng flavor were recognized strong by addition of red ginseng powder but oily taste, crispness, softness and overall preference were weak. The surface color and red ginseng flavor were strong at long storage period but sweetness, softness and overall preference decreased, respectively. The peroxide value increased at long storage period and decreased after 6 week. The 2% and 4% addition showed lower peroxide value compared to other treatment. The acid value increased at early storage period, but did not change after 4 weeks.

Failure Analysis of Stress Reliever in Heat-Transport Pipe of District Heating System

  • Cho, Jeongmin;Chae, Hobyung;Kim, Heesan;Kim, Jung-Gu;Kim, Woo Cheol;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.243-249
    • /
    • 2022
  • The objective of the present study was to perform failure analysis of double-layered bellow (expansion joint), a core part of stress reliever, used to relieve axial stresses induced by thermal expansion of heat-transport pipes in a district heating system. The bellow underwent tensile or compressive stresses due to its structure in terms of position. A leaked position sufferred a fatigue with a tensile component for decades. A cracked bellow contained a higher fraction of martensitic phase because of manufacturing and usage histories, which induced more brittleness on the component. Inclusions in the inner layer of the bellow acted as a site of stress concentration, from which cracks initiated and then propagated along the hoop direction from the inner surface of the inner layer under fatigue loading conditions. As the crack reached critical thickness, the crack propagated to the outer surface at a higher rate, resulting in leakage of the stress reliever.

Numerical Analysis and Laboratory Experiment of Rapid Restoration of Underground Cavity Using Expansive Material without Excavation (팽창재료를 이용한 지하공동의 비개착식 긴급복구 공법에 대한 실내실험 및 수치해석)

  • Lee, Kicheol;Choi, Byeon-Ghyun;Park, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to evaluate the suitability of emergency underground cavity restoration method filling cavity with expansive material based on numerical analysis. For the numerical analysis, experiments were conducted to evaluate properties of expansive material. Based on the measured expansion pressure of the expansive material from the experiment, behavior of underground cavity restoration with various cavity dimensions (variation of height and width of rectangular-shape cavity) was numerically assessed. As a result of analysis, the vertical displacements of the top and bottom of cavity were significantly influenced by the cavity width and lateral displacements of cavity sides were highly dependent on cavity height. These vertical and lateral displacements were increased with increasing expansion pressure of expansive material. Also, when the expansion pressure was applied, the vertical displacement of the upper surface layer of the road was less dependent on cavity height, and was greatly influenced by cavity width.

Reforming of Expanded Graphite for Improving Fire Resistance of Fireproof Sealant (방화용 실란트의 내화성 향상을 위한 첨가제로서 팽창흑연의 개질)

  • Hong, In Kwon;Lee, Won Jae;Lim, Hyun Seok;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.437-441
    • /
    • 2017
  • This study was carried out to investigate the volumetric expansion ratio and hardness of expanded graphite after coating with various resins which were used as an additive of fireproof sealant. The coating thickness of the resin, which represents the coating rate, was dependent of the drying speed of the resin and the viscosity of the resin. Therefore the coating thickness was shown as follows: polyvinyl acetate > acrylic resin > urethane resin > water soluble latex. Furthermore, the volumetric expansion ratio was as follows: urethane resin > water soluble latex > acrylic resin > polyinyl acetate and the hardness was as follows: polyvinyl acetate resin > acrylic resin > water soluble latex > urethane resin. This showed that the volume of expansion was reduced by expansion, which was not covered by coating, but significantly increased by increasing hardness and allowed it to be used as a refractory addition. According to the response surface methodology, the optimized addition amount and stirring speed of acrylic resin were 37.6 wt% and 441.4 rpm, respectively.

A Study for Lifetime Predition of Expansion Joint Using HILS (HILS 기법을 적용한 신축관 이음 수명예측에 관한 연구)

  • Oh, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.138-142
    • /
    • 2018
  • This study used HILS to test an expansion joint, which is vulnerable to the water hammer effect. The operation data for the HIL simulator was the length rate of the expansion joint by the water hammer, which was used for life prediction based on the vibration durability. For the vibration durability test, the internal pressure of the expansion joint was assumed to be a factor of the durability life, and the lifetime prediction model equation was obtained by curve fitting the lifetime data at each pressure. During the test, the major failure modes of crack and water leakage occurred on the surface of the bellows part. The lifetime prediction model typically follows an inverse power law model. The pressure is a stress factor, and the model is effective in only a specific environment. Therefore, another stress factor such as temperature will be added and considered for a mixed lifetime prediction model in the future.