• Title/Summary/Keyword: Surface Displacement

Search Result 1,476, Processing Time 0.044 seconds

Changes in Back Body Surface Measurements for Dynamic Postures in the Form of Baseball Batting Motion with a 3D body Scanning

  • Shin, Saemi;Chun, Jongsuk
    • International Journal of Human Ecology
    • /
    • v.14 no.1
    • /
    • pp.41-55
    • /
    • 2013
  • The purpose of this study was to analyze human upper body surface changes at the shoulder and back area. The body surface data were analyzed in terms of muscle and bone displacement in dynamic postures. Body surface data were collected with a 3D body scanner. The body surface was scanned at the static and four baseball batting postures. The body surface dimensions over the deltoids, scapulae and trapezius were measured. The results show that the vertical measurements of the deltoids increased by 20%. The horizontal measurements of the axilla of the back increased. The surface of the trapezius was elongated by over 10%, and the lower back musculature was elongated by about 50%. The results of this study showed that changes in back body surface caused by upper arm movements. It was influenced by the deltoid articulated with the humeri and the scapulae and trapezius. These body surface changes caused by muscle activities and ranges of motion can be used to design functional clothing.

Kinematic Variables Comparison of Setter Toss Motion on Volleyball According to Toss Types (배구경기 세터 토스 동작의 운동학적 비교분석)

  • Chung, Nam-Ju;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • Purpose : The purpose of this study was to analyze setter toss motion kinematically according to toss types. Method : Dependent variables were elapsed time, vertical displacement of the body center, the projected speed of the ball, and differences of the joint angle to the target for four setters positioning. Result : There was no significant difference in the time but the ball contact time was shorter when the toss distance of P3 was longer. There was significant difference in the vertical displacement of COM (p<.05). The vertical displacement of COM showed that the vertical movement gradually decreased when the quick distance was longer. The vertical displacement of COM was difference (p<.05), also there was difference of the ball speed (p<.001) at the Release point(E4). There was significant difference in the knee joint angle at a certain moment among the Release(E4) and Landing point(E5)(p<.05). The hip joint was significant difference among the Apex(E2), Ball Touch(E3), Release(E4), and the Landing point(E5) on the surface(E2, E3, E4 p<.05; E5 p<.005). The shoulder angle was significant difference among the Ball Touch(E3), Release(E4) and the Landing point(E5) on the surface(E3, E4 p<.05; E5 p<.001). The elbow was significant difference in the Apex(E2) (p<.05). The wrist was significant difference in the Release(E4) (p<.05). Conclusion : If we find the clue to expect the direction of the setter's ball, we have to fine the clues in the Apex(E2) that hip join and elbow, Ball Touch(E3) that hip joint and shoulder joint, Release(E4) that wrist, elbow, hip joint, and knee joint.

Influence of Weak Ground Ahead of the Tunnel Face on 3D-displacement and Face Extrusion (막장전방의 연약층이 터널 3차원변위 및 막장 수평변위에 미치는 영향)

  • Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.189-206
    • /
    • 2003
  • During tunnel excavation in urban area a systematic monitoring is important for the purpose of determination of support type and quantity, as well as for the control of stability of both surface structures and the tunnel itself due to the frequently, and in many cases, abruptly changing ground condition. In Austria absolute displacement monitoring methods have replaced relative displacement measurements by geodetic methods to a large extent. Prompt detection of weak ground ahead of the tunnel face as well as better adjustment of excavation and support to the geotechnical conditions is possible with the help of the improved methods of data evaluation on sites. Deformation response of the ground to excavation starts ahead of the tunnel face, therefore, the deformation and state of the tunnel advance core is the key factor of the whole deformation process after excavation. In other words, the rigidity and state of the advance core play a determining role in the stability of both surface structures and the tunnel itself. This paper presents the results from detailed three-dimensional numerical studies, exploring vertical displacements, vector orientations and extrusions on tunnel face during the progressive advancement for the shallow tunnel in various geotechnical conditions.

THREE-DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF THE JAWS AT THE SIMULATED BILATERAL AND UNILATERAL CLENCHINGS (양측성 및 편측성 이악물기시 상하악골 응력변화 및 변위에 관한 3차원 유한요소법적 연구)

  • Heo, Hoon;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.71-92
    • /
    • 1999
  • This study is to analyze the stress and displacement on the jaws during the bilateral and unilateral clenching task on three dimensional finite element model of the dentated skull. For this study, the computed tomography(G.E.8800 Quick, USA) was used to scan the total length of human skull in the frontal plane at 1.9mm intervals. The CAD data were extracted from the tomograms through digitizer(Summa Sketch III, USA) and then reconstructed by means of the spline method in the CAD program. In this project, a commercial software I-DEAS(Master Series ver-sion 3.0, SDRC Inc, USA) was used for three-dimensional stress analysis on the finite element model. which consists of articular disc, maxilla, mandible, teeth, periodontal ligament and cranium. The results are as follows. ; 1. During the bilateral clenching, each major muscle forces caused high stresses on various areas of skull: masseter muscle on articular disc and teeth ; temporal muscle on mandible and periodontal ligament ; medial pterygoid muscle on the temporomandibular joint. During the unilateral clenching, masseter muscle induced the maximum stress ; medial pterygoid muscle the minimum stress. 2. During the bilateral clenching, higher compressive stresses on articular disc were generated by the masseter muscle and higher deformation occurred on the most front outer sites. And during the unilateral clenching, temporal muscle and medial pterygoid muscle exerted their forces to twist temporomandibular joint area of the balancing side and induced a higher compressive stresses on the front outer sites of articular disc. 3. During the bilateral clenching, the masseter muscle bended the mandible outwardly, and then caused tensile stresses on the lingual surface of mandibular symphysis. And the medial pterygoid muscle caused tensile stresses on the labial surface of mandibular symphysis. 4. When each muscles were simultaneously applied on jaws, a high stress and displacement took place on mandible rather than on the maxilla. Also, a high stress and displacement took place during the unilateral clenching rather than during the bilateral clenching.

  • PDF

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

A Study on the Dynamics Behavior of Fatty Acid Monolayers at the Air-Water Interface by Current-Measuring Technique (변위전류 측정기법에 의한 기수계면의 지방산 단분자막의 동적 거동에 관한연구)

  • Kim, D.K.;Lee, S.H.;Kang, Y.C.;Lee, S.I.;Kim, C.S.;Back, S.K.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1699-1701
    • /
    • 2000
  • The dynamic behavior of fatty acid monolayers at the air-water interface was investigated using a displacement current-measuring technique coupled with the so-called Langmuir film technique and also the dipole moment of the acids was determined. The displacement current flowing though a short circuit wan generated only when induced charges on an electrode flowing though suspended in air was changed by monolayer compression. The displacement current measurement was found to be a very sensitive method used for a better understanding of the relationship between the structure and function of the monolayers placed on the water surface and it was also found to be a very useful method for detecting the dynamic motion of molecules in the entire range from the so-called gaseous state to solid state at the same time. In the paper investigate fatty monolayer dynamic state and electric property character. As result. Displacement current generate higher nearly distance electrodel and water surface. Also, Molecule behavior was found pocess active higher thermal.

  • PDF

AN EXPERIMENTAL STUDY ON THE MANDIBULAR CONDYLAR GROWTH FOLLOWING LATERAL DISPLACEMENT IN RABBIT (하악골 측방변위가 가토의 하악두에 미치는 영향에 관한 실험적 연구)

  • Shin, Dong-Young;Suh, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.22 no.2 s.37
    • /
    • pp.427-447
    • /
    • 1992
  • The purpose of this study was to evaluate the effect of the lateral displacement on the mandibular condylar growth in the rabbit. The experimental animals were twenty White NewZealand rabbits of 4-week old. Ten of them was used as control group, and experimental animal was composed of remaining ten. Laterodeviation appliance was made of cast base metal and appliance was cemented with resin in permanent fashion. Experimental group were sacrificed at 1, 2, 4, 6, 8 weeks form beginning of the experiment. Both of temporomandibular joint were prepared for histologic study. The conclusions are: 1. In control group, there was slight increase of proliferative zone and hypertrophic zone at 2-week control animal and slight reduction at 4-week. 6-week and 8-week control animal were similiar to 1-week control animal. 2. In right mandibular condyle of experimental group, 2-week experimental animal showed marked increase of proliferative zone and hypertrophic zone at posterior surface of condylar head. In 8-week experimental animal marked increase at anterior surface of anticular surface is observed. 3. In left mandibular condyle of experimental group, proliferative zone and hypertrophic zone were reduced at 1-week experimental animal and slight increase at 2-week. Proliferative zone and hypertrophic zone were reduced at 4-week experimental animal and were slightly increased at 6 week. 4. After 8 weeks, right and left condyle were not different in experimental group. The condylar cartilage was stabilized 8 weeks after the experiment. No marked traumatic change was seen, but minute focal bleeding was seen at articular cavity in 1-week, 2-week and 4-week experimental animal. 6-week and 8-week experimental animal did not show bleeding tendency in articular cavity.

  • PDF

Classification of the Rusting State of Pipe Using a Laser Displacement Sensor (레이저 변위 센서를 활용한 배관 표면 상태분류)

  • Cheon, Kang-Min;Shin, Baek-Cheon;Shin, Geon-Ho;Go, Jeong-Il;Lee, Jun-Hyeok;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.46-52
    • /
    • 2022
  • Although pipe performs various functions in industrial sites and residential spaces, if it is damaged due to corrosion caused by the external environment, it may cause equipment failure or a major accident. For this reason, various studies for safety management are being conducted, but studies on detecting corrosion or cracks on the pipe surface using a laser displacement sensor have hardly been conducted. Therefore, in this study, the corrosion degree of the pipe surface was compared and classified into 4 corrosion conditions, and inspection equipment using a laser scanner was manufactured. The corrosion height was calculated from the four surface data obtained from the measuring equipment and applied to various CNN algorithms, and 91% accuracy was obtained during training using the Modified VGGNet16 code with reduced number of parameters.