• Title/Summary/Keyword: Surface Deformations

Search Result 211, Processing Time 0.025 seconds

Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.419-444
    • /
    • 2014
  • In this study experimental result of a total of eight SCC and FRSCC slabs with the same cross-section were monitored for up to 240 days to measure the time-dependent development of cracking and deformations under service loads are presented. For this purpose, four SCC mixes are considered in the test program. This study aimed to compare SCC and FRSCC experimental results with conventional concrete experimental results. The steel strains within the high moment regions, the concrete surface strains at the tensile steel level, deflection at the mid-span, crack widths and crack spacing were recorded throughout the testing period. Experimental results show that hybrid fibre reinforced SCC slabs demonstrated minimum instantaneous and time-dependent crack widths and steel fibre reinforced SCC slabs presented minimum final deflection.

Wing-In-Ground Effect on Free Surface

  • Kim, Yong-Hwan;Rhee, Shin-Hyung;Jee, Sang-Min
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2007
  • This study aims the observation of wing-in-ground effect near free surface. Numerical computations are carried out to observe the deformation of free surface and the effects on lift and drag. The detailed flow fields around two- and three-dimensional wings with NACA 0012 section are observed from the results of a commercial CFD program, FLUENT, and the local deformations of free surface are obtained by applying a Rankine panel method. In the present cases, the small deformation of free surface under the wings is observed, but different forces are found between solid wall and free surface when the speed of wings becomes large.

A Study on the Magnetic Fluid driven by Electromagnetic Force (전자기력에 의한 자성유체의 구동에 관한 연구)

  • Nam Seong-won
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 1999
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented. The shape of free surface attained by the polar fluid approach is rougher and higher than that attained by the quasi-steady approach.

  • PDF

Numerical Investigation of Surface Deformations in Resin Coated Quasi-Isotropic Laminates due to Thermal Variance (수지를 코팅한 준등방성 적층판에 대한 열변형 수치해석)

  • Kim, Kyung-Pyo
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.207-215
    • /
    • 2014
  • In this paper the radial stiffness associated with stacking sequence effects, and the dimensional stability issue associated with thermally induced surface deformation in quasi-isotropic laminates due to the effect of stacking sequence and additional resin layer technique, are numerically investigated. Finally, the influence of surface resin layer techniques for fiber print-through mitigation in a composite mirror is tested for evaluation of surface accuracy across varying thermal conditions.

Dynamic behavior of FGM beam using a new first shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E.A.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.451-461
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface based formulation, and consequently, the governing equations and boundary conditions of functionally graded beams based on neutral surface have the simple forms as those of isotropic plates. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

On the Surface Defect Analysis of an Aluminum Tube for an OPC Drum using n SEM and EDX (SEM/EDX를 이용한 OPC 드럼용 Al 튜브의 표면결함 분석에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.143-148
    • /
    • 2007
  • The surface defects of an aluminum tube for an OPC drum have been analyzed using a scanning microscopy(SEM) and an energy dispersive X-ray analyze.(EDX). The SEM/EDX system, which may provide good information on the surface defects and their distributions, provides an optical diameter of an impurity and a chemical composition. These are strongly related on the coated film thickness and quality of an OPC drum, which is a key element of a toner cartridge for a laser printer. The experimental results show that the local deformations, scratch wear, and flaws are produce the non-uniform coating layers, which may be removed by a manufacturing process of an aluminum tube. The major parameters on the coating quality of an OPC drum are the impurities of an aluminum tube such as silicon, oxygen, calcium, carbon, sulphur, chlorine, and others. These impurities may be removed by an ingot molding, extrusion and drawing, quality control, and packing processes with a strict manufacturing technology.

Dynamic Free-surface Deformations in Axisymmetric Liquid Bridges

  • Sim B.-C.;Kim W.-S.;Zebib A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.160-161
    • /
    • 2003
  • Thermocapillary convection is a surface tension driven flow due to a temperature gradient along an interface. It occurs during a crystal-growth process and therefore understanding the convection is important to material processing in microgravity. Although modelling of the float-zone crystal-growth process has been of interest for a few decades, most studies of liquid bridges assumed non-deformable flat surfaces. In reality, the surface profile, g(t,z), is unknown and should be obtained as a solution to the coupled transport equations along with the surface force balance. Here we report on a numerical study of axisymmetric thermocapillary convection in liquid bridges with deformable surfaces. The interface is determined as part of the complete solution. The influence of the capillary number (Ca), Reynolds number (Re), Prandtl number (Pr) and aspect ratio(Ar) on the dynamics is explored.

  • PDF

SAR Measurements of Surface Displacements at Augustine Volcano, Alaska, Associated with the 1986 and 2006 Eruption

  • Lee, C.W.;Jung, H.S.;Won, J.S.;Lu, Z.;Kwoun, O.I.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.401-404
    • /
    • 2007
  • Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. The observed surface displacements from satellite radar interferometry were compared with GPS data. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano.

  • PDF

Stability Analysis and Application Evaluation of the Pretensioned Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 안정해석 및 적용성 평가)

  • Kim, Hong-Taek;Park, Si-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.783-790
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the PSN(pretensioned soil nailing) system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also proposed arc techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors arc analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and $FLAC^{2D}$ program analysis. And a numerical approach is further made to determine a postulated failure surface as well as a minimum safety factor of the proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system arc analyzed throughout comparisons with the results expected in case of the general soil nailing system. The efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.