• Title/Summary/Keyword: Surface Deformations

Search Result 211, Processing Time 0.031 seconds

Investigation on Interaction between Tunneling and Groundwater (터널시공과 지하수의 상호작용 고찰)

  • Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.415-424
    • /
    • 2004
  • This paper presents the effect of groundwater on tunneling performance. The interaction between the tunneling and groundwater was examined using a 3D stress-pore pressure coupled finite-element analysis, The results of the 3D coupled analysis were then compared with those of a total stress analysis. Examined items included pore pressures around lining and lining forces. Also examined include face displacements and ground surface movements, The results indicated that the interaction between the tunneling and ground water significantly increases the lining forces and ground deformations, and that the effect of ground water on tunneling can only be captured through a fully coupled analysis, Implementations of the findings from this study arc discussed in great detail.

  • PDF

Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test (콘크리트 파괴거동특성의 실험적 연구I-이축응력시험)

  • 이상근;이상민;박상순;한상훈;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF

The Estimation of Curvature Deformation of Steel Plates in Water Cooling Process after Line Heating (선상 가열시 수냉 효과를 고려한 강판의 변형 추정에 관한 연구)

  • HwangBo, Hyeok;Yang, Park-Dal-Chi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.209-212
    • /
    • 2006
  • Line heating with water cooling is generally adapted process in the shipyards for the forming hull surface. The purpose of this paper is to develop a model of thermal deformation in water cooling process after the line heating. In order to simulate the cooling process, heat transfer analysis was performed by assuming the effects of water cooling as a negative heat-source. Experiment for the line heating with water cooling was performed for 9 models of plates in order to verify the cooling model. By using the suggested model for the water cooling process, it could be observed that the present method predict the plate deformations in the line heating more accurately.

  • PDF

FSI analysis on the sail performance of a yacht with rig deformation

  • Bak, Sera;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.648-661
    • /
    • 2019
  • Thin fabric-based yacht sails have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure and also affected by the deformation of the mast. These deformations can change the airflow characteristics over the sail. Therefore, Fluid-Structure Interaction (FSI) analysis is needed to evaluate the sail force precisely. In this study, airflow over the deformed sail and rig was studied using FSI. Elastic deformation of the sail and rig was obtained by an aerodynamic calculation under dynamic pressure loading on the sail surface. The effects of rig deformation on the aerodynamic performance of the sail were examined according to the rig type and mast flexibilities. As a result, the changes of lift force for a fractional type rig with a thin mast section were more significant than with a masthead rig.

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

A Cooled Deformable Bimorph Mirror for a High Power Laser

  • Lee Jun-Ho;Lee Young-Cheol;Kang Eung-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.57-62
    • /
    • 2006
  • Adaptive optics (AO) has been applied in various fields including astronomy, ophthalmology and high power laser systems. An adaptive optics system for a high power laser is not significantly different from other AO systems in the point of configuration except that high energy absorbed by the deformable mirror distorts the deformable mirror surface and so degrades system performance. Currently we are researching a bimorph deformable mirror for beam cleaning of a high power class laser. The bimorph mirror was considered to have 99% reflective coating and 1% absorption. So this paper first presents the temperature profiles and corresponding thermal distortions of the bimorph mirror faceplate when the mirror is under a high power lasing for 10 seconds. The analysis was accomplished by the use of finite difference and finite element computer programs to generate the element arrays, calculate the temperature profiles, and determine the structural deformations. Then this paper proposes an 'embedded wafer' type water-cooling system with derived cooling parameters.

Stress-Path Dependent Behavior of Granular Soil (입상토의 응력경로 의존거동)

  • 정진섭;권원식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.106-117
    • /
    • 1998
  • The nature of stress-path dependency, the principle that governs deformations in granular soil, and the use of Lade's double work-hardening model for predicting soil response for a variety of stress-paths have been investigated, and are examined The test results and the analyses presented show that under some conditions granular soils exhibit stress-path dependent behavior. For stress-paths involving unloading or reloading, the stress-path with the higher average stress level produces the larger strains, whereas all stress-paths having the same intial states of stress, and involving only primary loading conditions, produce strains of similar magnitudes. Experimental evidence indicates that the stress- path dependent response obtained from the double work-hardening model is also observed for real soils. It is concluded that the influence of stress history on the friction angle is negligible and the strains increment direction is uniquely determined from the state of stress but is not perpendicular to the yield surface. The strains calculated from Lade's double work-hardening model are in reasonable agreement with those measured.

  • PDF

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

  • Pan, E.;Roy, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.727-740
    • /
    • 2006
  • A simple plane-strain solution is derived in this paper for the functionally graded multilayered isotropic elastic cylinder under static deformation. The solution is obtained using method of separation of variables and is expressed in terms of the summation of the Fourier series in the circumferential direction. While the solution for order n = 0 corresponds to the axisymmetric deformation, that for n = 2 includes the special deformation frequently utilized in the upper and lower bounds analysis. Numerical results for a three-phase cylinder with a middle functionally graded layer are presented for both axisymmetric (n = 0) and general (n = 2) deformations, under either the traction or displacement boundary conditions on the surface of the layered cylinder. The solution to the general deformation case (n = 2) is further utilized for the first time to find the upper and lower bounds of the effective shear modulus of the layered cylinder with a functionally graded middle layer. These results could be useful in the future study of cylindrical composites where FGMs and/or multilayers are involved.

A simple procedure to simulate the failure evolution

  • Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.601-612
    • /
    • 1996
  • To simulate the large-scale failure evolution with current computational facilities, a simple approach, that catches the essential feature of failure mechanisms, must be available so that the routine use of failure analysis is feasible. Based on the previous research results, a simple analysis procedure is described in this paper for failure simulation. In this procedure, the evolution of localization is represented by a moving surface of discontinuity, and the transition between continuous and discontinuous failure modes are described via the moving jump forms of conservation laws. As a result, local plasticity and damage models, that are formulated based on thermodynamic restrictions, are still valid without invoking higher order terms, and simple integration schemes can be designed for the rate forms of constitutive models. To resolve localized large deformations and subsequent cracking, an efficient structural solution scheme is given for Static and dynamic problems.

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.