• Title/Summary/Keyword: Surface Deformation

Search Result 1,996, Processing Time 0.03 seconds

Behavior Characteristics of Composite Reinforced Earth with Improved Soil Surface and Geogrid-reinforced Backfill (지반개량재 전면토체와 지오그리드 보강 배면토체로 형성된 복합보강토의 거동특성)

  • Bhang, In-Hwang;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.27-34
    • /
    • 2016
  • Many steepened slopes have become increasingly advantageous because of the desire to increase land usage and decrease site development costs. The proven concept of tensile reinforcement allows construction of slopes with far steeper face angles than the soils natural angle. Steepened slope face reinforced with improved soil can increase land usage substantially while providing a natural appearance. The paper presents composite reinforced earth with improved soil surface and geogrid-reinforced backfill. For the stability of the steepened slope, the behavior of the composite reinforced earth are validated and verified by case study and numerical analysis. The case study has performed to investigate the deformation of reinforce soil slope for 14 months. Its horizontal behavior by general vertical load shows within the safe range (0.5% of structure height). As a result of numerical analysis and case study, the reinforcement effect of the steepened slope technique using improved soil is sufficient to be constructed as reinforced soil slope.

Evaluation of the Bending Behavior of RC beam by Using Color-based Image Processing Method (색상에 기반한 영상분석기법을 이용한 콘크리트 거더의 휨 거동 분석)

  • Woo, Tae-Ryeon;Jung, Chi-Young;Kim, In-Tae;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2020
  • Cracks in reinforced concrete structures are the most common type of damage and are used as important analytical data to understand the fracture behavior characteristics of structures. Currently, there is a problem that most of the crack investigation relies on visual inspection, therefore many researchers have proposed image analysis techniques to improve the problem. In this study, we proposed a crack evaluation method to be applied at an indoor experimental level using image analysis method. The image analysis technique using color is for distinguishing a boundary surface between objects existing in an image, and is a method for separating similar colors into one region based on a predefined color. In this study, to improve the accuracy of image analysis, blue paint was applied to the concrete surface and bending experiments were performed. The image analysis method was able to measure the crack width with superior accuracy compared to the crack diameter, and at the same time, it was also possible to analyze the deflection of the beam. Both the crack and deformation were able to confirm the accuracy similar to the existing measurement method, and it was found that the image analysis method was very excellent in terms of applicability.

Effect of TESPT Silane Coupling Agent on Mechanical Properties of Precipitated Silica Filled NBR Compound for Oil Seal (TESPT 실란커플링제가 침전 실리카로 보강된 오일씰용 NBR복합소재의 기계적 물성에 미치는 영향)

  • Lee, Young-Seok;Hwang, Ki-Seob;Lee, Jong-Cheol;Kim, Tae-Geun;Ha, Ki-Ryong
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.45-53
    • /
    • 2011
  • The effect of the silane coupling agent, bis(triethoxysilypropyl)tetrasulfide (TESPT), on mechanical properties of a silica-filled NBR compound for oilseal was investigated. Curing behavior and crosslinking density of the compounds were measured using ODR (oscillating disk rheometer) and swelling ratio in toluene. UTM (universal testing machine) and shore A hardness tester were used in order to study the characteristics of mechanical properties of original vulcanizates and aged ones with heated air and ASTM No. 3. oil. Recovery of elasticity which influences the performance and service life of oilseal was investigated by giving bending deformation to vulcanizates in aging condition. After bending aging test, recovery distance was measured and calculated angle of recovery from it. TR (temperature retraction) test was performed on these vulcanizates to determine the low temperature recovery behavior. Wear resistance was measured by Taber type abrasion tester. In addition, SEM was used to characterize the morphology of the worn surface of vulcanizates. The result showed that addition of TESPT into silica-filled compound improves not only compound flow-ability, interaction between NBR and silica and crosslinking density, but also hardness, 100% modulus, recovery of elasticity, wear resistance, heat resistance and ASTM No.3 oil resistance of vulcanizates.

Analysis on New Research Opportunities and Strategies for Earth Sciences in the United States (미국 지질과학분야 신규 연구주제 및 전략분석)

  • Kim, Seong-Yong;Ahn, Eun-Young;Bae, Jun-Hee;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • The essential role of the Division of Earth Sciences(EAR) in the Directorate of Geoscience(GEO) of National Science Foundation of America(NSF) is to support basic research aimed at acquiring fundamental knowledge of the Earth system that can be directly applied to the United States' strategic needs. The 2011 Committee on New Research Opportunities in the Earth Sciences(NROES) of the National Academy of Sciences(NAS) identified specific areas of the basic earth science research scope of the EAR that were poised for rapid progress during the next decade. Quantified by interdisciplinary approaches, the Committee highlighted the following topics relating to the EAR Deep Earth Processes and Surface Earth Processes sections: (1) the early Earth; (2) thermochemical internal dynamics and volatile distribution; (3) faulting and deformation processes; (4) interactions among climate, the Earth surface processes, tectonics, and deep Earth processes; (5) co-evolution of life, environment, and climate; (6) coupled hydrogeomorphic-ecosystem response to natural and anthropogenic change; and (7) interactions of biogeochemical and water cycles in terrestrial environments. We also promote future research challenges such as the critical zone studies. In order to promote more active such a huge future research challenges, additional research support policies are needed.

Precision Grinding System for Micro Core-pin (마이크로 코어 핀 정밀 연삭 시스템)

  • Yang, Ji-Kyung;Lee, In-Cheol;Kang, Dong-Seong;Han, Bong-Seok;Han, Yu-Jin;Lee, Jung-Woo;Song, Ki-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.50-57
    • /
    • 2017
  • In the injection molding process, a core that builds a space for a product is installed at the internal place in the mold and fabricated as the frame of the mold. In this make up, the fabricating partial form of the mold at a pin is a core pin. The core pin is finer because an injection mold produces miniaturization and integration. On the other hand, when the core is manufactured using the existing centerless grinder, it generates vibrations because of the lack of a fixed zig for a micro size workpiece. For this reason, an existing centerless grinder without a micron size fixed zig, makes a defective product due to vibration and deformation. In this study, a compact grinding system that can be installed using an existing centerless grinder was fabricated to make a micro size core pin. Using the compact grinding system, grinding experiment for core pin was carried out. The performance of the system was confirmed by measuring the surface roughness, roundness, and cylindricity.

Formation of amorphous Ga2O3 thin films on Ti metal substrates by MOCVD and characteristics of diodes (MOCVD에 의한 Ti 금속 기판 위의 비정질 Ga2O3 박막 형성과 다이오드 특성)

  • Nam Jun Ahn;Jang Beom An;Hyung Soo Ahn;Kyoung Hwa Kim;Min Yang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.125-131
    • /
    • 2023
  • Ga2O3 thin films were deposited on Ti substrates using metal organic chemical vapor deposition (MOCVD) at temperatures ranging from 350 to 500℃. Lower deposition temperatures were chosen to minimize thermal deformation of the Ti substrate and its impact on the Ga2O3 film. Film surfaces tended to become rough at temperatures below 500℃ due to three-dimensional growth, but the film formed at 500℃ had the most uniform surface. All deposited films were amorphous in structure. Vertical Schottky diodes were fabricated and I-V and C-V measurements were performed. I-V measurements showed higher operating voltages compared to a typical SBD for films grown at different temperatures. The sample grown at 500℃, which had the most uniform surface, exhibited the lowest operating voltage. Higher growth temperatures resulted in higher capacitance values according to C-V measurements.

Comparative analysis of ground settlement and tunnel displacement due to tunnel excavation considering topographic information based on GIS (GIS 기반 지형 정보를 고려한 터널 굴착에 따른 지반침하와 터널 변위 비교 분석)

  • Jae-Eun, Cho;Ye-Rim, Jung;Seong-Min, Song;Ji-Seok, Yun;Sang-Gui, Ha;Han-Kyu, Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, as the development of underground spaces has become active due to rapid urbanization and population density, interest in the ground behavior according to the construction of underground spaces is increasing. In large cities with high population density and many buildings, ground subsidence has a great impact on structures and there may be a risk of collapse, so the analysis of ground behavior due to underground construction is essential. Previous studies have been conducted on the subsidence pattern of the surface and the deformation of the tunnel when constructing the tunnel, but analysis has rarely been conducted by using actual topographic information. Therefore, this study analyzed the difference in ground behavior between the actual topography and the flat topography. As a result, it was confirmed that ground settlement occurs at higher elevations, such as in mountainous topography, and when the numerical analysis is performed considering topographical information, the crown settlement of the tunnel is up to about approx. It showed a difference of 10 mm, and it was found that the sensitivity was less in the case of displacement of tunnel wall compared to the crown settlement and ground settlement. The numerical analysis considering the actual GIS-based topographic information presented in this study can be used to obtain more accurate surface subsidence data to understand the behavior of the upper structure due to tunnel excavation.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

Evaluation of Crack Behavior and Climate Monitoring of Ipseok-dae Columnar Joints and Jigong Neodeol Rock Blocks in Mudeungsan National Park (무등산국립공원 입석대 주상절리 및 지공너덜 암괴의 균열 거동과 기후 모니터링 평가)

  • Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.621-630
    • /
    • 2021
  • This study evaluated cracks and climate monitoring in Ipseok-dae columnar joints and Jigong Neodeol rock blocks in Mudeungsan National Park. The rocks' state of cracking and their surface temperatures were measured alongside air temperature, relative humidity, and wind velocity. The maximum crack behavior in Ipseok-dae was 0.367 mm at one point, and showed a slight tendency at other points. One in Jigong Neodeol was within 0.15 mm and showed a stable state with little change. The surface temperature of the Ipseok-dae columnar joints was higher on the side exposed to sunlight than on the shaded side. All blocks of Jigong Neodeol rock showed similar temperatures. The air temperature showed a similar distribution for both rock types. The air temperature showed a similar distribution for both Ipseok-dae and Jigong Neodeol. The relative humidity was mostly between 20% and 60% in Ipseok-dae and was between 20 and 70% in Jigong Neodeol. Both areas had low wind speeds, with maxima of 5 m/s in Ipseok-dae and 3 m/s in Jigong Neodeol. As a result, it is evaluated that crack behavior in Ipseok-dae columnar joints and Jigong Neodeol rock blocks have maintained a very stable state so far. The surface temperature, temperature, relative humidity, and wind velocity of the two areas showed small difference depending on the season, indicating that they were affected to some extent by the season. From a long-term perspective, this can continuously affect the deformation of the Ipseok-dae columnar joints or Jigong Neodeol rock blocks. Therefore, in order to accurately evaluate their stability, it is considered that the current microscopic delamination and exfoliation or the propagation and expansion of cracks should be continuously measured.

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).