• 제목/요약/키워드: Surface Currents

검색결과 576건 처리시간 0.03초

다층 진단 모델에 의한 광양만의 잔차류 수치 실험 (Numerical simulation of residual currents by diagnostic multi-level model in Kwangyang Bay, Korea)

  • 추효상;이병걸;이규형
    • 한국환경과학회지
    • /
    • 제11권1호
    • /
    • pp.41-56
    • /
    • 2002
  • In order to estimate the quantitative roles of the tide induced residual currents, density currents and wind driven currents on the residual currents in Kwangynag Bay Korea, numerical experiments with a diagnostic multi-level model were carried out. Density currents were calculated from the temperature and salinity data observed in January, May, August and November 1998. Anti-clockwise circulations are formed at the western inner part of the bay, the location from the east of Myodo Is. to the south of POSCO Co. and the place between Yeosu peninsula and Namhae Is. from the calculation results of the tide induced residual currents. Velocities of the density currents are less than 3cm/s at the western inner part of the bay and about 5cm/s at the southern entrance of the bay. Density currents get strong in summer and weak in autumn. Wind driven currents at the surface layer flow in the directions of the given winds which are the daily mean winds when the temperature and salinity observations are carried out. In the middle and lower layers, however the wind driven currents flow in the opposite direction to the surface currents as supplementary currents. The surface wind driven currents are greater than the tide induced residual currents or the density currents. The calculated residual currents including the tide induced residual currents, density currents and wind driven currents agree with the results of the current observations approximately. In the Bay, the wind driven currents affect on the residual currents greatestly and tide induced residual currents and density currents do in the second place and the third place.

소형 표류부이를 이용한 안목해안 표층 연안류 관측 (Surface current measurements using lagrangian Drifters in Anmok)

  • 임학수;김무종;심재설
    • 한국연안방재학회지
    • /
    • 제4권spc호
    • /
    • pp.245-253
    • /
    • 2017
  • In this study, surface currents measured by small lagrangian GPS drifters (Aquadrifter) in Anmok coastal waters were analysed to account for the variability of nearshore surface current and wave-induced current to understand sediment transport mechanism near the crescentic bars in the surf-zone and near Kangneung breakwater and submerged breakwater in Anmok. The 8 times lagrangian drifter experiments were conducted mostly during in 2nd, 3rd, 4th intensive measurements in winter, summer, and spring seasons with long-term wave observation at the station W1. The analysed surface currents near the breakwaters in Anmok show that wave-induced currents at the middle of the submerged breakwater were separated and flowed toward the shoreline but offshore currents were dominant through the channels between the breakwaters. The longshore currents near the shoreline were flowed to the northwest (southeast) depending on the incoming waves from ENE (NNE). The surface nearshore offshore currents were generated mostly by waves and winds in case of high and low wave energy environments. Using the small-size lagrangian surface drifter experiments, we successfully measured longshore and offshore wave-induced currents in the surf-zone and near submerged breakwater close to Kangneung breakwater. The drifter experiment results show the availability of direct observation of nearshore surface currents to understand the mechanism of sediment transport analysing observed wave-induced current and ebb-current in the surf-zone generated by incoming waves and local winds.

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • 제14권1호
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

Investigation of Degradative Signals on Outdoor Solid Insulators Using Continuous Wavelet Transform

  • Uzunoglu, Cengiz Polat
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.683-689
    • /
    • 2016
  • Most outdoor solid insulators may suffer from surface degradations due to non-stationary currents that flow on the insulator surface. These currents may be classified as leakage, discharge and tracking currents due to their disturbing potencies respectively. The magnitude of these currents depends on the degree of the contamination of surface. The leakage signals are followed by discharge signals and tracking signals which are capable of forming carbonized tracking paths on the surface between high voltage and earth contacts (surface tracking). Surface tracking is one of the most breakdown mechanisms observed on the solid insulators, especially polymers which may cause severely reduced lifetime. In this study the degradations observed on polyester resin based insulators are investigated according to the IEC 587 Inclined Plane Test Standard. The signals are monitored and recorded during tests until surface tracking initiated. In order to prevent total breakdown of an insulator, early detection of tracking signals is vital. Continuous Wavelet Transform (CWT) is proposed for classification of signals and their energy levels observed on the surface. The application of CWT for processing and classification of the surface signals which are prone to display high frequency oscillations can facilitate real time monitoring of the system for diagnosis.

진공중에시 전극표면상태가 전구전류 및 절연파괴전압에 미치는 영향 (The Effect of Electrode Surface Condition on Prebreakdown Current and Breakdown Voltage)

  • 김두식;이동인;이광식;김인식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.286-289
    • /
    • 1987
  • The measurements of prebreakdown currents and breakdown voltages have been made for smooth rough, protrusion plane parallel stainless steel electrodes in vacuum ($10^{-5}$ torr), as a function of electrode separation, in the range $0.4{\sim}2.4mm$ using DC source($0{\sim}200KV$). Thee prebreakdwon currents of a each condition are found to be consistent with the Fouler-Nondheim field emission theory. The effect of the electrode surface condition on the local field enhancement factors, prebreakdown currents, and on the breakdown voltages are shown. The breakdown mechanism of a small vacuum gap was ascertained as the field emission corresponding the F-N theory. Therefore, these results suggest that the field emission currents following the electrode surface condition play a major role for initiation of DC breakdown.

  • PDF

영일만에서 고주파 레이더로 관측된 수렴(침강)과 수온변동 (High-frequency Radar Observations of Convergence (Downwelling) and Water Temperature Variations in Yeongil Bay)

  • 황보경;손영태;김형록;박지혜
    • 해양환경안전학회지
    • /
    • 제29권1호
    • /
    • pp.1-14
    • /
    • 2023
  • 동해연안의 반폐쇄성 해역인 영일만에서 고주파해양레이더(HF-Radar)로 측정된 표층 해수유동 자료를 활용하여 1)바람과 수평적인 해수유동 사이의 상관성을 파악하고 2)수직적으로 조밀한 간격의 층별 수온시계열 자료와 연계하여 수평적 및 수직적 해수유동의 특성을 파악하였다. 시계열 관측기간 중 영일만 해역의 전역에 걸쳐 북동풍이 우세하게 나타났을 때 표층부터 저층까지 수온의 급격한 상승이 동반되었다. 또한 표층의 장주기 해수유동에서도 풍향과 유사한 방향의 흐름이 뚜렷하게 관측되었다. 바람과 표층 해류 사이의 지연상관 분석을 통해 영일만에 북동풍의 바람이 불기 시작하여 일정하게 지속된다면 짧은 시간(1 ~ 2시간) 내에 남서향의 표층 해류가 발생되는 것을 확인하였다. 일평균된 장주기 표층 해류로부터 수렴과 발산을 계산하였고 이를 통해 층별 관측지점에서 발생한 두 번의 급격한 저층수온 상승이벤트가 모두 영일만의 북동풍과 연관된 표층 해수(상대적 고온수)의 수렴(침강) 현상으로 인해 나타난 것으로 판단하였다.

임펄스전류에 의한 대지표면전위상승 및 위험전압의 분석 (An Analysis of the Ground Surface Potential Rise and Hazardous Voltages Caused by Impulse Currents)

  • 이복희;이규선;최종혁;성창훈
    • 조명전기설비학회논문지
    • /
    • 제25권4호
    • /
    • pp.117-123
    • /
    • 2011
  • Lightning and switching surges propagating through the grounding conductors lead to transient overvoltages, and electronic circuits in information technology systems are very susceptible to damage or malfunction from the electrical surges. Surge damages or malfunctions of electrical and electronic equipment may be caused by potential rises. To solve these problems, it is very important to evaluate the ground surface potential rises and hazardous voltages such as touch and step voltages at or near the grounding systems energized by electrical surges. In this paper, the performance of grounding systems against the surge current containing high frequency components on the basis of the actual-sized tests is presented. The ground surface potential rises and hazardous voltages depending on impulse currents for vertical or horizontal grounding electrodes are measured and analyzed. Also the touch and step voltages caused by the impulse currents are investigated. As a result, the ground surface potential rises, the touch and step voltages near the grounding electrodes are raised and the conventional grounding impedances are increased as the front time of the injected impulse currents is getting faster.

금강하구 연안에서 고주파 레이더로 관측된 표층해류에 대한 객관적 유속산출 적용 (Application of Objective Mapping to Surface Currents Observed by HF Radar off the Keum River Estuary)

  • 황진아;이상호;최병주;김창수
    • 한국해양학회지:바다
    • /
    • 제16권1호
    • /
    • pp.14-26
    • /
    • 2011
  • 금강하구 연안역에서 고주파 레이더를 사용하여 2008년 12월부터 2009년 2월까지 표층류를 관측하였는데, 관측된 표층류 자료는 전파의 간섭과 기상 상황에 따라 일시적으로 관측이 이루어지지 않는 구역들이 있었다. 관측된 구역의 자료를 보충하기 위하여 최적보간 과정을 개발하여 적용하였다. 금강하구 연안역에서 표층류의 공간적 상관성의 특성을 조사하고 최적보간법을 이용하여 공간적 결측 구역을 보충하였으며, 보간된 표층류의 시공간적 분포와 산출유속 오차 패턴을 조사하였다. 연구해역 표층 순환에서 조류가 우세하므로 연안역 관측 지점들 사이의 표층해류간 상관계수가 0.7 이상이었다. 원 자료를 보간하기 위해 관측 자료공분산(C), 지역화한 공간평균 공분산($C^G_{sm}$), 지수함수를 이용한 맞춤 평균공분산($C_{ft}$)을 사용하였다. 최적보간이 결측 구간을 채우고, 관측 자료의 시계열 중에서 뾰족하게 튀어나온 비정상적인 자료 부분을 억제하였으며, 그 결과 보간한 유속 자료의 분산은 원 자료의 분산보다 작았다. 공간적 자료획득률이 70% 이상(이하)일 때, $C^G_{sm}$ ($C_{ft}$)를 이용하면 C를 이용한 경우에 비해 보간 오차가 상대적으로 작았다.

표면 전류 분포를 이용한 T자형 UWB 평면형 모노폴 안테나 해석 (Analysis of a T-Shaped UWB Printed Monopole Antenna Using Surface Currents)

  • 이동현;박위상
    • 한국전자파학회논문지
    • /
    • 제16권9호
    • /
    • pp.883-892
    • /
    • 2005
  • 본 논문에서는 T자형의 방사체를 가지는 초광대역 평면형 모노폴 안테나를 제안하고, 방사체와 그라운드 표면에 흐르는 전류 분포를 분석하였다. 측정된 임피던스 대역폭은 VSWR 2 미만 기준으로 3.1${\~}$11 GHz이고, 이는 UWB 대역을 만족한다. 제안된 안테나의 주파수에 따른 표면 전류 분포를 분석하여 제안된 안테나는 두개의 90도 굽은 비대칭적인 다이폴이 대칭으로 놓여 있는 안테나로 동작함을 설명하였다. 이 안테나의 표면 전류 분포가 방사 패턴에 영향을 미치는 양상이 다이폴의 경우와 유사하며, 그라운드 평면의 길이와 너비는 다이폴의 굵기와 길이에 해당한다. 이러한 해석이 다른 일반적인 평면형 모노폴 안테나에도 적용 가능함을 보였다. 끝으로 그라운드 평면의 모서리를 테이퍼링을 하여 공진 주파수를 낮추는 예과 방사체에 역 U자 슬랏을 추가하여 특정 대역을 저지하는 예를 제시하고 이를 표면 전류를 이용하여 설명하였다.

Kaolin 오손물 누적량 모의실험 및 누설전류변화 특성 (A Simulation for Kaolin Contaminants Accumulation and Varying Characteristics of Leakage Currents)

  • 박재준;송일근;이재봉;천성남
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권11호
    • /
    • pp.483-489
    • /
    • 2005
  • This study performs a simulation for an accumulation mechanism of contaminants, which were produced in an industrial belt of inland, on the surface of insulators. From the simulation, silicon insulators presented higher accumulation than that of EPDM(Ethylene Propylene Diene Terpolymer : EPDM) insulators on the same distance in the case of the Virgin polymer insulator, and this result presented the same result in the insulator applied in actual fields. In the case of the accumulation test for the Virgin insulator and insulators used in actual fields, it is evident that the Virgin insulator presented more accumulation than that of the insulator used in actual fields. The results can be caused by the generation of LMW (Low Molecular Weight) on the external material of polymer insulators, and the level of the accumulation can be changed according to the degree of the continuous generation of LMW. In order to simulate a certain pollution of an industrial belt, which is located along the coastline, leakage currents were measured by applying the contaminant compulsively that was produced with salts and Kaolin according to the ratio of its weight on the surface of insulators. The more increase in the content of Kaolin pollution, the level of leakage currents on the surface of polymer insulator more increased. In addition, the approaching time to the maximum value of leakage currents presented a nearly constant level regardless of the content of Kaolin. The level of leakage currents significantly decreased according to the passage of time, and the level of leakage currents on the surface maintained a constant level at a specific time regardless of the content of Kaolin.