• Title/Summary/Keyword: Surface Alloying

Search Result 231, Processing Time 0.038 seconds

Nanotube Shape Variation on the Ti-xNb Alloys with Alloying Elements and Applied Potentials

  • Byeon, In-Seop;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.112-112
    • /
    • 2015
  • The purposed of this work was to determine nanotube shape variation on the Ti-xNb alloys with alloying elements and applied potentials. Samples were prepared by arc melting, followed by followed by homogenization for 12 hr at $1000^{\circ}C$ in argon atmosphere. This study was evaluated the phase and microstructure of Ti-xNb alloys using an X-ray diffraction (XRD) and optical microscopy (OM). The morphology of the samples was investigated with a field-emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). The nanotube on the alloy surface was formed in 1 M $H_3PO_4$ with small additions of NaF 0.8 wt.%. All anodization treatments were carried out using a scanning potentiostat (Model 362, EG&G, USA) at constant voltage 30 V for 120 min, respectively. The morphology of the samples was investigated with a field-emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Surface characteristics of nanotbue formed on Ti-xNb alloys was investigated by potentiodynamic test and potentiostatic in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. It was observed that the changed ${\alpha}$ phase to ${\beta}$ phase with Nb content.

  • PDF

The Effect of Sb Addition on the High Temperature Oxidation in the Steels (강중 Sb 첨가가 고온산화에 미치는 영향)

  • Oh, I.S.;Cho, K.C.;Kim, D.H.;Kim, G.M.;Sohn, I.R.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.228-234
    • /
    • 2009
  • It is well known that the formation of $SiO_2$, $Al_2O_3$ and/or other oxides at the steel surface during the annealing process deteriorates the surface quality of galvanized steels. It is important to minimize oxide formation during the annealing process for the superior surface quality of galvanized steels. In order to minimize the oxide formation on the steel surface, antimony was chosen as an alloying element to the commercial steels. Then, the effect of alloying element on the oxidation behavior was investigated. A small amount of antimony was added to two types of steels, one with 0.1% C, 1.0% Si, 1.5% Mn, 0.08% P, and the other with 0.002% C, 0.001% Si, 0.104% Mn, 0.01% P. Then, the oxidation behavior was investigated from $650{\sim}900^{\circ}C$ in the air. The addition of antimony to the steels retarded the outward diffusion of elements during the oxidation, resulting in reduction of the oxidation rate.

Resistance Spot Weldability of Surface Roughness Textured Galvannealed Steel Sheets (표면조도처리 된 합금화 용융아연도금강판의 저항 점 용접성)

  • Park, Sang-Soon;Kim, Ki-Hong;Kang, Nam-Hyun;Kim, Young-Seok;Rhym, Young-Mok;Choi, Yung-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.495-505
    • /
    • 2008
  • With the high proportion of zinc coated steels in body-in-white assembly, newly developed surface roughness textured galvannealed steel sheets have been introduced. In this study, zinc coated and surface roughness textured steel sheets were welded by resistance spot welding to investigate its weldability including electrode wear test. Based on the results of tensile-shear test, nugget diameter changes, and electrode tip growth test, it was clear that both surface roughness textured steels (GA-T and GA-E) showed good weldability. Also, there was no large difference in weldability and electrode wear behavior between GA-T and GA-E steels which have different surface roughness morphology. An analysis of electrode degradation showed Fe and Zn penetration through the electrode tip surface at 2400 welds reached $55{\sim}60{\mu}m$ and $75{\sim}80{\mu}m$, respectively. Therefore, there is no significant effect of surface roughness morphology on spot weldability of surface roughness textured galvannealed steel sheets. However, slight difference in thickness of alloying layers existing on electrode tip was found between GA-T and GA-E steels.

Effect of Annealing Temperature on the Nodular Corrosion of Zircaloy-4 Alloy (Zircaloy-4 합금의 Nodule형 부식에 미치는 열처리 온도의 영향)

  • 정용환;최종술;임갑순
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.31-41
    • /
    • 1991
  • The nodular corrosion behavior of Zircaloy-4 alloy was investigated by autoclave test at 50$0^{\circ}C$ under 1500 psi for the specimens quenched into water from $700^{\circ}C$, 80$0^{\circ}C$, 90$0^{\circ}C$, and 105$0^{\circ}C$. It was observed that the corrosion resistance of Zircalloy-4 specimen increased with increase in annealing temperature, and annealing at $\alpha$-region temperatures resulted in nodular corrosion while annealing at the temperature range of $\alpha$+$\beta$ and $\beta$ did not show nodular corrosion. It was also found that the size of nodule formed on the surface of the specimens increased with increase in exposure time in autoclave, but the total number of nodule remained uncha-nged. The corrosion of furnace-cooled specimens progressed mostly in the interior of grains where Fe and Cr alloying elements were largely depleted during the cooling process. However, the grain boundary seemed to act as a barrier to the nodular corrosion. From combining the present results with other works, it is suggested that the nodules nuc-leate in the local region where some of alloying elements are depleted.

  • PDF

Properties of the metallic glass thin films fabricated by multicomponent single alloying target and its applications in various industrial fields

  • Shin, S.Y.;Moon, K.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.77-77
    • /
    • 2015
  • Metallic glass alloys having dense packing structure have short range ordered structure with long range homogeneity. Therefore, they can provide complete corrosion protection and unique electrical properties. Recently, metallic glass thin films have received much attention to extend its application fields combining with PVC coating technologies. The metallic glass thin films can change the surface properties of the conventional bulk materials which need anticorrosion properties. However, multi-component alloying targets are required to fabricate the metallic glass thin films because metallic glass alloys contain more than three elements. Recently, many researchers have been reported the properties of the metallic glass thin films synthesized with multi-cathode systems or amorphous target. But, it is difficult to fabricate the large sized sputtering targets for mass production equipment with high toughness and thermal stability. In this study, newly developed sputtering target with glass forming ability and the properties of the metallic glass thin films will be introduced with respect to the various application fields such as bipolar plate in PEM fuel cell and decorative coatings for electric device and construction fields.

  • PDF

XU-TEC PROCESS AND XU-TEC SAW BLADES

  • Xu, Z.;Gao, Y.;Wang, C.Z.;Su, Y.A.;Tang, B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.154-154
    • /
    • 1995
  • The Xu-Tec process is also called the double glow surface alloying technology and is a new method of surface metallurgy which can produce an alloy layers with sp ecial phisical and chemical properties on the surface of common and inexpensive mater ials. Many super alloys and alloy steels, sueh as nickel base alloys, high speed steels and staiinless steels, have been produced by Xu-Tee Process on the surfaces of carbon steels. The depth of the alloy lasyers may vary from several microns up to 300 micr ons with alloying elements in a concentration of few percentage to 100%. World wide patents for Xu-Tec process have been granted in the United states, Canada, United Ki ngdom, Australia and Japan. High performance saw blades have been successfully produced by the Xu-Tee process with much simper processing steps and less cost than bimetal high speed saw blades. A comparison of the cutting times and wear rates of the Xu-Tee blades with the conventional bimetal blades has been made. The Xu-Tee bIases demonstrates sim ilar or better performance than bimetal blades. A Xu-Tec Unit for the commercial pr oduction of Xu-Tec saw blades has been designed and manufactured. This Unit can t reat 10,000 haek saw blades at one time. Three Xu-Tec hack saw blades production I ines have been set up in China. China.

  • PDF

Effect of silicon on alloying behavior of hot-dip galvannealed steel sheets (합금화 용융아연 도금강판의 합금화 거동에 미치는 실리콘의 영향)

  • 이호종;김종상
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.134-143
    • /
    • 1999
  • The effects of silicon on galvannealing behavior of interstitial-free (IF) steels were studied. The growth rate of the Fe-Zn alloy layer was retarded as silicon in the steel added. Titanium in steel strongly favors Fe-Zn reaction, in particular outburst structures, whereas silicon inhibit them. Cross-sectional and planar views of galvannealed coatings were investigated to characterize alloy phase development. A possible mechanism to explain the retardation effect of silicon is discussed in terms of concentration on surface and inhibition layer.

  • PDF

Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying

  • Lwin, May Likha;Yoon, Sang-min;Madavali, Babu;Lee, Chul-Hee;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.120-125
    • /
    • 2016
  • P-type ternary $Bi_{0.5}Sb_{1.5}Te_3$ alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300-400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.

Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy (Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가)

  • Jung, Sujin;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.

A Comparative Study of Single-Phase AC and Inverter DC on Electrode Life for Resistance Spot Welded Electrogalvanized Steel Sheets (전기아연 도금 TRIP강판의 저항 점용접 시 연속타점 수명에 미치는 단상 AC와 인버터 DC의 비교 연구)

  • Son, Jong Woo;Park, Yeong-Do;Kang, Mun Jin;Kim, Dong Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.834-841
    • /
    • 2009
  • A study on the welding of electrogalvanized TRIP (Transformation-Induced Plasticity) steels was done to compare the life of the electrode and the alloying phenomena on the electrode tip surface using singlephase AC and inverter-DC resistance welding processes. A longer life of the electrode (>200 welds) was achieved using the inverter-DC welding process. The tensile shear strength was higher in the electrode life test when welded with the inverter DC welding machine it maintained a higher value even when the welding nugget diameter was smaller than specified. When spot-welding was conducted using the single-phase AC welding process, a higher wear rate of the electrode was observed compared to that with the inverter-DC process. An alloying layer used to determine the rate of electrode growth showed differences in the metallurgical features of the surface alloying and Zn penetration depending on whether the single-phase AC process or the inverter-DC welding process was used. Moreover, changes in the dynamic resistance during the electrode life test were correlated with the electrode wear (or growth) rate.