• Title/Summary/Keyword: Surface Adhesion

Search Result 2,048, Processing Time 0.033 seconds

Screening of Agricultural and Food Processing Waste Materials as New Sources for Biodegradable Food Packaging Application

  • Wang, Long-Feng;Reddy, Jeevan Prasad;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • Agar-based composite films were prepared with variety of food processing and agricultural processing waste materials in order to screen natural lingo-cellulosic resources for the value-added utilization of the under-utilized materials. The effect of these waste materials (10 wt% based on agar) on mechanical properties, moisture content (MC), water vapor permeability (WVP), water absorption behavior of biocomposite films were investigated. Biocomposite films prepared with various fibers resulted in significant increase or decrease in color and percent transmittance. The MC, WVP, and surface hydrophobicity of biocomposite films increased significantly by incorporation of fibers, while the water uptake ratio and solubility of the film decreased. SEM images of biocomposite film showed better adhesion between the fiber and agar polymer. Among the tested cellulosic waste materials, rice wine waste, onion and garlic fibers were promising for the value-added utilization as a reinforcing material for the preparation of biocomposite food packaging films.

  • PDF

Label-Free Real-Time Monitoring of Reactions Between Internalin A and Its Antibody by an Oblique-Incidence Reflectivity-Difference Method

  • Wang, Xu;Malovichko, Galina;Mendonça, Marcelo;Conceição, Fabricio Rochedo;Aleixo, José AG;Zhu, Xiangdong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.165-168
    • /
    • 2016
  • Surface protein internalin (InlA) is a major virulence factor of the food-borne pathogen L. monocytogenes. It plays an important role in bacteria crossing the host's barrier by specific interaction with the cell adhesion molecule E-cadherin. Study of this protein will help to find better ways to prevent listeriosis. In this study, a monoclonal antibody against InlA was used to detect InlA. The reaction was label-free and monitored in real time with an oblique-incidence reflectivity-difference (OI-RD) technique. The kinetic constants kon and koff and the equilibrium dissociation constant Kd for this reaction were also obtained. These parameters indicate that the antibody is capable of detecting InlA. Additionally, the results also demonstrate the feasibility of using OI-RD for proteomics research and bacteria detection.

Analytical Electron Microscopy and Atomic Force Microscopy Reveal a Physical Mechanism of Silicon-Induced Rice Resistance to Blast

  • Kim Ki Woo;Han Seong Sook;Kim Byung Ryun;Park Eun Woo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2005.10a
    • /
    • pp.15-20
    • /
    • 2005
  • Locations of silicon accumulation in rice leaves and its possible association with resistance to rice blast were investigated by analytical electron microscopy and atomic force microscopy. A blast-susceptible cultivar, Jinmi, and partially resistant cultivars, Hwaseong and Suwon345, were grown under a hydroponic culture system with modified Yoshida's nutrient solution. Electron-dense silicon layers were frequently found beneath the cuticle in epidermal cell walls of silicon-treated plants. Increasing levels of silicon were detected in the outer regions of epidermal cell walls. Silicon was present mainly in epidermal cell walls, middle lamella, and Intercellular spaces within subepidermal tissues. Furthermore, silicon was prevalent throughout the leaf surface with relatively small deposition on stomatal guard cells in silicon-treated plants. Force-distance curve measurements revealed relative hardness and smaller adhesion force in silicon-treated plants (18.65 uN) than control plants (28.39 uN). Moreover, force modulation microscopy showed higher mean height values of elastic Images In silicon-treated plants(1.26 V) than in control plants (0.44 V), implying the increased leaf hardness by silicon treatment. These results strongly suggest that silicon-induced cell wall fortification of rice leaves may be closely associated with enhanced host resistance to blast.

  • PDF

Cell-Specific Targeting of Texas Red with Anti-Ep-CAM Antibody

  • Lee, Soo-Chul;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.123-127
    • /
    • 2005
  • The polyclonal antibody was generated against the peptide fragment of 62 amino acid residues (D 181-T242) near the COOH-terminal region of the extracellular domain of epithelial-cell adhesion molecule (Ep-CAM) and shown to be able to recognize Ep-CAM in competitive ELISA. Then, sulforhodamine 101 acid chloride (so called Texas red), a fluorescence dye, was conjugated to the affinity-purified anti-Ep-CAM antibody utilizing the reaction between the aliphatic amines of antibody and the sulfonyl chloride of Texas red. The molar ratio of Texas red to antibody was estimated to be approximately 1.86 by measuring optical densities at 280 nm and 596 nm, implying that the two molecules of Texas red at most were conjugated to antibody. The anti-Ep-CAM antibody-Texas red conjugate was then used for immunohistochemistry of CT-26 murine colon carcinoma cells. Based upon the fluorescence microscope images, anti-Ep-CAM antibody is able to deliver Texas red specifically to the surface of CT-26 cells on which Ep-CAM was actively expressed. This result indicates that anti-Ep-CAM antibody could be useful for the tissue-specific delivery of photosensitizers via antigen-antibody interaction.

  • PDF

Fabrication and Characterization of CuInSe2 Thin Films by Co-evaporation Method (Co-evaporation방법를 이용한 CuInSe2 박막 제조 및 특성분석)

  • Kwon, Se-Han;Kim, Seok-Ki;Yoon, Kyung-Hoon;Ahn, Byung-Tae;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1437-1439
    • /
    • 1996
  • In this paper, investigations on a three stage processing technique involving the co-evaporation of In-Se, Cu-Se and In-Se in this order at different deposition condition was undertaken. At first stage, we obtained good $In_{2}Se_{3}$ films by In-Se coevaporation. $In_{2}Se_{3}$ films show smooth and dense structure. And ration of In:Se was 2:3 $CulnSe_2$ thin films deposited by three stage process have shown strong adhesion on Mo coated glass substrates and good morphological properties suitable device fabrication. XWD spectra show single phase chalcopyrite $CulnSe_2$ films with strong orientation in the 112 plane. Resistivity of $CulnSe_2$ thin films was about $5{\times}10^{5}\;{\Omega}{\cdot}cm$. Surface morphology of CdS/$CulnSe_2$/Mo films was very good because of no pin holes.

  • PDF

Surface Adhesion and Strength Properties of PAI-Nano CS Hybrid Insulation Coating (PAI-Nano CS 하이브리드 절연코팅의 표면접착 및 강도특성)

  • Han, Se-Won;Kim, Suk-Jun;Jang, He-Mi;Kang, Dong-Pil;Lee, Jong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.59-60
    • /
    • 2009
  • PAI-CS 나노하이브리드 절연코팅의 표면접착과 기계적 강도 및 내아크 내구성에 대하여 실험 분석하였다. 졸-겔법으로 PAI의 강화입자로 선택한 나노 CS는 메트릭스 수지와의 상안정성이 잘 이루어졌다. 나노경도를 측정한 결과 순수 PAI수지와 비교하여 CS첨가량이 증가함에 따라 경도와 탄성율 그리고 강성이 개선되고 있다. 한편 실란처리 방법에 따라 경 도와 탄성율의 개선폭이 달라지는 경향이 있어 제조시 적절한 실란처리에 의한 표면제어가 필요한 것으로 나타났다. 전기적 표면 내아크시험에서 순수 수지와 비교하여 우수한 내구성을 가지고 있어서 이는 서지와 부분방전 등에 노출되는 전력용 절연 코팅으로 사용이 기대된다.

  • PDF

Experimental Results of $O_2$ Plasma Time and Power Treated on PDMS Surface for Improvement of Adhesion between Silicon and PDMS (Si-PDMS 접착력 개선을 위한 PDMS 표면의 $O_2$ plasma 처리 시간 및 Power 실험 결과)

  • Hong, Jang-Won;Chang, Jong-Hyeon;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1462-1463
    • /
    • 2008
  • 패키징 재료로 유연성이 뛰어난 polydimethyl-siloxane (PDMS)를 사용하면 다양한 flexible packaging에 응용할 수 있다. 본 논문에서는 $O_2$ plasma를 이용한 PDMS의 표면 처리를 통해 PDMS의 표면에너지를 증가시키고, silicon과 PDMS 사이의 접착력 향상을 확인하였다. $O_2$ plasma power와 처리 시간에 따른 PDMS 표면의 접촉각을 측정하고 표면에너지를 산출하였는데, PDMS의 표면에너지는 $O_2$ plasma power에는 크게 영향을 받지 않고, plasma 처리 시간에 민감한 것으로 나타났다. Silicon-PDMS의 접착력 역시 plasma power에는 거의 영향을 받지 않았지만 plasma 처리 시간이 길어질수록 접착력이 커지는 것으로 확인되었는데 50W의 power로 25초 동안 처리한 조건에서 최대 130kPa의 압력까지 견디는 것으로 확인되었다. 이는 $O_2$ plasma 처리 시간이 길어짐에 따라 PDMS의 표면에너지가 커지고 이것이 silicon-PDMS의 접착력을 증가시키는 것을 나타낸다.

  • PDF

The Effect of Chitosan Treatment of Fabrics on the Natural Dyeing using Loess (키토산 처리포의 황토염색에 관한 연구)

  • Kwon, Min-Soo;Jeon, Dong-Won;Kim, Jong-Jun
    • Fashion & Textile Research Journal
    • /
    • v.7 no.3
    • /
    • pp.327-332
    • /
    • 2005
  • The purpose of this study is to investigate the effect of chitosan treatment on the dyeing of cotton fabric specimens using loess as colorants. The wet pick up ratio of the chitosan acid solution, as well as the drying condition after the padding of the fabric specimens, was changed in order to study the loess uptake on the fabric. The average particle diameter of the loess was measured. Main components of the loess were $SiO_2$, $Al_2O_3$, and $Fe_2O_3$. By the chitosan treatment, the loess amount on the cotton fabric increased. 80% wet pick up ratio of the chitosan acid solution on the cotton fabric specimen allowed more stable and even adhesion of the loess on the fabric surface, compared to the cases of 100% and 120% wet pick up ratio.

Effects of N-acetylcysteine on biofilm formation by MBR sludge

  • Song, WonJung;Lade, Harshad;Yu, YoungJae;Kweon, JiHyang
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.195-203
    • /
    • 2018
  • N-acetylcysteine (NAC) has been widely used as an initial mucolytic agent and is generally used as an antioxidant to help alleviate various inflammatory symptoms. NAC reduces bacterial extracellular polymeric substances (EPS) production, bacterial adhesion to the surface and strength of mature biofilm. The efficacy has been shown to inhibit proliferation of gram-positive and gram-negative bacteria. In membrane bioreactor (MBR) processes, which contain a variety of gram negative bacteria, biofilm formation has become a serious problem in stable operation. In this study, use of NAC as an inhibitor of biofilm contamination was investigated using the center for disease control (CDC) reactors with MBR sludge. Biomass reduction was confirmed with CLSM images of membrane surfaces by addition of NAC, which was more efficient as the concentration of NAC was increased to 1.5 mg/mL. NAC addition also showed decreases in EPS concentrations of the preformed biofilm, indicating that NAC was able to degrade EPS in the mature biofilm. NAC addition was also effective to inhibit biofilm formation by MBR sludge, which consisted of various microorganisms in consortia.

Electrical Properties of a-IGZO Thin Films for Transparent TFTs

  • Bang, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.99-99
    • /
    • 2010
  • Recently, amorphous transparent oxide semiconductors (TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). The TOS TFTs using a-IGZO channel layers exhibit a high electron mobility, a smooth surface, a uniform deposition at a large area, a high optical transparency, a low-temperature fabrication. In spite of many advantages of the sputtering process such as better step coverage, good uniformity over large area, small shadow effect and good adhesion, there are not enough researches about characteristics of a-IGZO thin films. In this study, therefore, we focused on the electrical properties of a-IGZO thin films as a channel layer of TFTs. TFTs with the a-IGZO channel layers and Y2O3 gate insulators were fabricated. Source and drain layers were deposited using ITO target. TFTs were deposited on unheated non-alkali glass substrates ($5cm{\times}5cm$) with a sintered ceramic IGZO disc (3 inch $\varnothing$, 5mm t), Y2O3 disc (3 inch $\varnothing$, 5mm t) and ITO disc (3 inch $\varnothing$, 5mm t) as a target by magnetron sputtering method. The O2 gas was used as the reactive gas. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of a-IGZO thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF