• Title/Summary/Keyword: Surface $CO_2$

Search Result 4,117, Processing Time 0.032 seconds

Anodic Oxidation Behavior of AZ31 Magnesium Alloy in Aqueous Electrolyte Containing Various Na2CO3 Concentrations

  • Moon, Sungmo;Kim, Yeajin
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.331-338
    • /
    • 2016
  • In this work, anodic oxidation behavior of AZ31 Mg alloy was studied as a function of $Na_2CO_3$ concentration in electrolyte by voltage-time curves and observation of surface appearances and morphologies after the anodic treatments, using optical microscopy and confocal scanning laser microscopy (CSLM). The voltage-time curves of AZ31 Mg alloy surface and surface appearances after the anodic treatments showed three different regions with $Na_2CO_3$ concentration : region I, below 0.2 M $Na_2CO_3$ where shiny surface with a number of small size pits; region II, between 0.4 M and 0.6 M $Na_2CO_3$ where dark surface with relatively low number of large size burned or dark spots; region III, more than 0.8 M $Na_2CO_3$ where bright surface with or without large size dark spots were obtained. The anodically treated AZ31 Mg alloy surface became significantly brightened with increasing $Na_2CO_3$ concentration from 0.5 M to 0.8 M which was attribute to the formation of denser and smoother surface films. Pits and porous protruding reaction products were found at relatively large size and small size spots, respectively, on the AZ31 Mg alloy surface in low concentration of $Na_2CO_3$ less than 0.2 M. The formation of pits is attributed to the result of repetition of the formation and detachment of porous anodic reaction products. Based on the experimental results obtained in this work, it is concluded that more uniform, denser and smoother surface of AZ31 Mg alloy could be obtained at more than 0.8 M $Na_2CO_3$ concentration if there is no other oxide forming agent.

First-principles Study on the Half-metallicity and Magnetism of a Full Heusler Alloy, Co2HfSi, in Bulk State and at its (001) Surfaces

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.115-119
    • /
    • 2008
  • The authors predicted that $Co_2HfSi$, a $Co_2$-based full Heusler alloy, is being a half-metallic ferromagnet by first-principles calculations using the all electron full-potential linearized augmented plane wave method which adopts the generalized gradient approximation. The integer value of the calculated total magnetic moment of 2.00 ${\mu}_B$ per formula unit and a spin gap of 0.69 eV in spin down state confirmed the half-metallicity of bulk $Co_2HfSi$. For the $Co_2HfSi$(001) surface, we considered two possible surface terminations, namely, Co terminated and HfSi terminated surfaces. It was found that half-metallicity was retained at the HfSi-terminated surface but not at the Co-terminated surface. The magnetic moment of surface Co atoms in the Co-terminated surface was slightly lower than that of Co atoms in deep inner-layers, whereas the magnetic moments of Hf and Si atoms at the HfSi-terminated surface were almost same as those in deep inner-layers.

Interactive CO2 Adsorption on the BaO (100) Surface: A Density Functional Theory (DFT) Study

  • Kwon, Soon-Chul;Hwang, Jung-Bae;Lee, Han-Lim;Lee, Wang-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2219-2222
    • /
    • 2010
  • A density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) adsorbents is conducted to understand the chemical activity of the oxygen site on the BaO (100) surface. This study evaluated the adsorption energies and geometries of a single $CO_2$ molecule and a pair of $CO_2$ molecules on the BaO (100) surface. A quantum calculation was performed to obtain information on the molecular structures and molecular reaction mechanisms; the results of the calculation indicated that $CO_2$ was adsorbed on BaO to form a stable surface carbonate with strong chemisorption. To study the interactive $CO_2$ adsorption on the BaO (100) surface, a pair of $CO_2$ molecules was bound to neighboring and distant oxygen sites. The interactive $CO_2$ adsorption on the BaO surface was found to slightly weaken the adsorption energy, owing to the interaction between $CO_2$ molecules.

Enhanced CO2 electrocatalytic conversion via surface treatment employing low temperature plasma (플라즈마 표면처리를 통한 CO2 전기화학적 전환 촉매성능 개선)

  • Choi, Yong-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.5
    • /
    • pp.261-272
    • /
    • 2022
  • CO2 electroreduction is considered as a means to overcome climate change by converting CO2 into value-added chemicals and liquid fuels. Although numerous researchers have screened versatile metal for the use of electrodes, and looked into the reaction mechanism, it is still required to develop highly enhanced electrocatalyst for CO2 reduction to reach beyond lab-scale. Plasma treatment applying onto the surface of meal electrodes could improve activity, selectivity and stability of the electrocatalysts. This review highlights the effect of plasma pretreatment, and provides insight to design suitable CO2 electrocatalyst.

Surface Electronic Structures and Magnetism of a Full-Heusler Alloy Co2CrGa(001): A First-principles Study

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.97-102
    • /
    • 2007
  • We have investigated the electronic structures and magnetism of a full Heusler alloy $Co_2CrGa(001)$ surface by using the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). We considered two types of different terminations: the Co-terminated (Co-Term) and the CrGa-terminated (CrGa-Term) surfaces. From the calculated layer-projected density of states (LDOS), we found that the surface of the CrGa-Term shows nearly half-metallic character while that of the Co-Term is far from the half-metallic. For the Co-Term, the surface Co atom moves down to the bulk region by $0.05{\AA}A$, while the subsurface Cr and Ga atoms move up to the surface layer by 0.05 and $0.01{\AA}$, respectively. For the CrGa-Term, there is a large inward relaxation of the surface Ga atom $(0.07{\AA})$, but the relaxation of the surface Cr atom is very small $(0.01{\AA})$. The relaxations affect not much to the overall shapes of DOS for both terminations, but make the surface states of the surface Cr and Ga atoms for the CrGa-Term shift to higher energy that enhances the nearly half-metallic character of the CrGa-Term. The magnetic moments of the surface $Cr(2.98{\mu}_B)$ in the CrGa-Term and the surface $Co(1.17{\mu}_B)$ in the Co-Term were much increased compared to those of the inner-layers $(1.79\;and\;0.77{\mu}_B)$, respectively, while that of the subsurface Cr atom in the Co-Term was decreased to $1.19{\mu}_B$.

The Surface fCO2 Distribution of the Western North Pacific in Summer 2002 (2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성)

  • Choi, Sang-Hwa;Kim, Dong-Seon;Shim, Jeong-Hee;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.

Seasonal and Spatial Variations of CO2 Fluxes Between Surface and Atmosphere in Foreshore, Paddy Field and Woods Sites (갯벌, 논 및 산림 부지에서 지표와 대기 사이의 이산화탄소 플럭스 계절/공간 변동 분석)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Yu, Hun-Sun;Kim, Park-Sa;Kim, Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.963-975
    • /
    • 2011
  • For this research, they were monitored $CO_2$ flux and environmental factors ($CO_2$ concentration, soil temperature, soil moisture, soil organic carbon, soil pH, soil Eh) in foreshore, paddy field and woods sites at the winter season (January 2009) and the summer season (September 2009). Seasonal and spatial variations for monitored data were analyzed, and linear regression functions of $CO_2$ flux as environmental factors were estimated. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the winter season were shown $-8\;mgCO_2m^{-2}hr^{-1}$ and $-25\;mgCO_2m^{-2}hr^{-1}$, respectively. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the summer season were shown $47\;mgCO_2m^{-2}hr^{-1}$ and $117\;mgCO_2m^{-2}hr^{-1}$, respectively. Thus, $CO_2$ was sunk from atmosphere to surface at the winter season and it was emitted from surface to atmosphere at the summer season. $CO_2$ fluxes in woods site were emitted $145\;mgCO_2m^{-2}hr^{-1}$ at the winter season and $279\;mgCO_2m^{-2}hr^{-1}$ at the summer season.

Effect of $Al_2O_3$ coating on the surface of $LiCoO_2$ for the cathode of lithium ion battery ($Al_2O_3$로 코팅된 $LiCoO_2$ 입자로 제조된 리튬 이온 전지의 특성에 대한 연구)

  • 오승석;변동진;이중기;조병원
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.226-226
    • /
    • 2003
  • The Commercial LiCoO$_2$ particles, which were 7.7${\mu}{\textrm}{m}$ in average diameter, were coated with $Al_2$O$_3$ by a gas suspension spray coating method. The coating amount of $Al_2$O$_3$ on the surface of LiCoO$_2$ was varied from 0.1 to 2 wt.% and compared their electrochemical characteristics with those of bare LiCoO$_2$. $Al_2$O$_3$ coating on the surface of LiCoO$_2$ increased surface area and electrical conductivity, and showed the better cycle and thermal stability even at the higher voltage. The observed optimum A1$_2$O$_3$ coating amount that exhibited the highest capacity retention was 0.2 wt.%.

  • PDF

The local polishing of material surface using the $CO_2$ laser ($CO_2$ 레이저를 이용한 시료 표면의 국부 폴리싱)

  • Kim, Young-Seop;Shon, Ik-Bu;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.7-10
    • /
    • 2009
  • In this paper, we study experimentally the local polishing of $SiO_2$ surface using the $CO_2$ laser. For laser local polishing, we polished to remove the grooves or to be reformed the surface of grooves after forming the grooves on the material surface. We measured the reflectance, transmittance, and beam profile in order to measure the roughness of polished surface. The Atom Force Microscope (AFM) is used to measure roughness of local polishing surface. We can predict that the laser polishing contribute to the removal of generated debris and surface roughness on the micro processing.

  • PDF

Competitive Adsorption of CO2 and H2O Molecules on the BaO (100) Surface: A First-Principle Study

  • Kwon, Soon-Chul;Lee, Wang-Ro;Lee, Han-Na;Kim, J-Hoon;Lee, Han-Lim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.988-992
    • /
    • 2011
  • $CO_2$ adsorption on mineral sorbents has a potential to sequester $CO_2$. This study used a density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) in the presence of $H_2O$ to determine the role of $H_2O$ on the $CO_2$ adsorption properties on the ($2{\times}2$; $11.05\;{\AA}{\times}11.05\;{\AA}$) BaO (100) surface because BaO shows a high reactivity for $CO_2$ adsorption and the gas mixture of power plants generally contains $CO_2$ and $H_2O$. We investigated the adsorption properties (e.g., adsorption energies and geometries) of a single $CO_2$ molecule, a single $H_2O$ molecule on the surface to achieve molecular structures and molecular reaction mechanisms. In order to evaluate the coordinative effect of $H_2O$ molecules, this study also carried out the adsorption of a pair of $H_2O$ molecules, which was strongly bounded to neighboring (-1.91 eV) oxygen sites and distant sites (-1.86 eV), and two molecules ($CO_2$ and $H_2O$), which were also firmly bounded to neighboring sites (-2.32 eV) and distant sites (-2.23 eV). The quantum mechanical calculations show that $H_2O$ molecule does not influence on the chemisorption of $CO_2$ on the BaO surface, producing a stable carbonate due to the strong interaction between the $CO_2$ molecule and the BaO surface, resulting from the high charge transfer (-0.76 e).