• Title/Summary/Keyword: Surcharge pressure

Search Result 84, Processing Time 0.023 seconds

Model Tests on the Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • 조삼덕;안태봉;이광우;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.109-116
    • /
    • 2004
  • The model tests are conducted to assess the behavior characteristics of geogrid reinforced soil walls according to different surcharge pressures and reinforcement spacings. The models are built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used is geogrid(tensile strength 2.26t/m). Decomposed ganite soil(SM) is used as a backfill material. The strain gauges and LVDTs are Installed to obtain the strain in the reinforcements and the displacements of the wall face. From the results, it can be concluded that the more the reinforcement tensile strength increases, the more the wall displacements and the geogrid strains decreases. The maximum wall displacements and geogrid strains of the model walls occur due to the uniform surcharge pressure at the 0.7H from the bottom of the wall. The horizontal displacements of the wall face nonlinearly increase with the increase of surcharge pressures, and this nonlinear behavior is significantly presented for larger surcharge due to the nonlinear tensile strength-strain relationship of the reinforcements.

Runoff and Unsteady Pipe Flow Computation (유출과 부정류 관수로 흐름 계산에 관한 연구)

  • Jeon, Byeong-Ho;Lee, Jae-Cheol;Gwon, Yeong-Ha
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.251-263
    • /
    • 1990
  • For surcharge flow in a sewer, the slot technique simulates surcharge flow as open - channel flow using a hypothetical narrow open piezometric slot at the sewer crown. The flow in a sewer is described mathematically using the unsteady open - channel Saint-Venant equations. In this study, the computer simulation model(USS-slot) using slot techniques is develeped to simulate the inlet hydrographs to manholes and the flow under pressure as well as free - surface flow in tree - type sewer networks of circular conduits. The inlet hydrographs are simulated by using the rational method or the ILSD progrm. The Saint-Venant equations for unsteady open - channel flow in seweres are solved by using a four - point implicit difference scheme. The flow equations of the sewers and the junction flow equations are solved simulaneously using a sparse matrix solution technique.

  • PDF

Distribution of Vertical Earth Pressure due to Surcharge Loads Acting on Cantilever Retaining Wall Near Rigid Slope (강성경사면에 인접한 역T형 옹벽에 작용하는 상재하중에 의한 연직토압분포)

  • 유남재;이명욱;박병수;홍영길
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.141-152
    • /
    • 2002
  • This paper is the result of the experimental and numerical research on the distribution of vertical earth pressure due to surcharge loads acting on cantilever retaining wall close to a rigid slope with a stiff angle. Centrifuge model experiments were performed with changing the roughness of adjacent slope to the wall, distance between the wall and the slope and gravitational levels. Vertical earth pressures were measured by earth cells embedded in the backfill of the wall. Test results of vertical earth pressures due to surcharge loads were compared with theoretical estimations by using two different methods of limit equilibrium and the numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung(1993, 1997), were used to analyze test results. Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the vertical stress distributions acting on the backfill. FLAC with the hyperbolic constitutive model was also used for the numerical estimation. As a result of comparison of test results with theoretical and numerical estimations, distribution of vertical earth pressures obtained from centrifuge model tests is generally in good agreement with numerical estmated values by using FLAC whereas the wedge theory shows values close to test results in case the distance between the wall and the slope is narrow.

A Study on the Lateral Flow in Soft Soils subjected to Unsymmetrical Surcharges (편재하중을 받는 연약지반의 측방유동에 관한 연구)

  • 안종필
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.177-190
    • /
    • 1993
  • When soft soils are effected by unsymmetrical surcharge due to embankement and abutements of a bridge, large plastic sheraring deformations such as settlements, lateral displacements, upheavals and sliding shearing failure in the soils occurred and they have often damaged considerabily to the soils and structure. This study examines the existing theoretical background for the behavior of the displacement of soils by unsymmetrical surcharge on the soft soils and compares the analytical results to the actual measurements performed through the model test. The procedures of model test are that a model stock device is made and soft soils are filled in a container which fixes the soils. Then the displacements observed when surcharge load increa ses by regular interval at undrainage condition. It analyzes the relation of soil characteristics to displacement, critical surcharge and ultimate bearing capadty, condition of plastic flow and lateral flow pressure, comparing them with the existing theories. Understanding the causes of lateral displacement in soft soils due to unsymmetrical surchages will prevent a damage in advance.

  • PDF

Effect of surface bolt on the collapse mechanism of a shallow rectangular cavity

  • Huang, Fu;Zhao, Lian-heng;Zhang, Sheng
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-515
    • /
    • 2017
  • Based on the collapse characteristics of a shallow rectangular cavity, a three-dimensional failure mechanism which can be used to study the collapsing region of the rock mass above a shallow cavity roof is constructed. Considering the effects of surcharge pressure and surface bolt on the collapsing block, the external rate of works produced by surcharge pressure and surface bolt are included in the energy dissipation calculation. Using variational approach, an analytic expression of surface equation for the collapsing block, which can be used to study the collapsing region of the rock mass above a shallow cavity roof, is derived in the framework of upper bound theorem. Based on the analytic expression of surface equation, the shape of the collapsing block for shallow cavity is drawn. Moreover, the changing law of the collapsing region for different parameters indicates that the collapsing region of rock mass decreases with the increase of the density of surface bolt. This conclusion can provide reference for practicing geotechnical engineers to achieve an optimal design of supporting structure for a shallow cavity.

A Study on the Calculation of Lateral Flow Pressure of Polluted Soils with Various Water Contents (함수량이 다른 오염지반의 측방유동압 산정에 관한 연구)

  • 안종필;박경호
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.75-88
    • /
    • 2002
  • When unsymmetrical surcharge is worked on polluted soft soils, large plastic shearing deformation such as settlements, lateral displacement, upheavals and shearing failure occured in the soils and they have often done considerable damages to the soils and structures. Accordingly, this study conducts laboratory pilots test to investigate the determination method of lateral flow pressure of polluted soft soils by comparing it to existing equations. The model test is performed that a model stock device is made and polluted soils are filled in a container which fires the soils. Then the displacement is observed as surcharge load is increased by regular intervals at untrained condition. The result shows that test the lateral flow pressure is adequately calculated by the equation (P=K$_{0}$YH) and the maximum value of lateral flow pressure Is found near 0.3H of layer thickness(H) and is higher to ground surface than synthesis pattern, Poulos distribution pattern and soft clay soils(CL, CH) which is not polluted.

Characteristics of Vertical Stress Distribution in Soil according to the Relative Density of Sandy Soil in case of Surface Loading (지표면 재하시 사질토 지반의 상대밀도에 따른 지중 연직응력분포 특성)

  • 임종석;이인형;정원중
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.422-426
    • /
    • 2003
  • Model soil tank tests were conducted in sandy soil to investigate the effect of surcharge strip loads on vertical stress distribution in soil. A total number of 6 tests were performed using one loading plate and two relative density(55%, 65%). The soil was considered as an elastic material, while no friction was allowed between the wall and the soil. Measured stress values were compared to predictions defined by Frohlich, Boussinesq and Westergaard. The comparison of measured values and predictions used the ratio between the soil pressure and load value. Results of this study demonstrated that experimental values were generally larger than predictions. The Frohlich analysis provided the best prediction, while the Boussinesq analysis and Westergaard theory not presented a satisfactional result.

  • PDF

Behavior of Lateral Earth Pressure around the Underpass Constructed by the STS Construction Method

  • Jin, Kyu-Nam;Kim, Hyo-Jin;Sim, Young-Jong
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • Recently developed trenchless construction methods ensure stability for the ground settlement by inserting steel pipes along the underpass section and integrating steel pipes before ground excavation to form pipe-roof. This study is to confirm the reinforcing effect of pipe-roof by measuring lateral earth pressure acting on the underpass constructed by the STS (Steel Tube Slab) construction method. For this purpose, lateral earth pressure was measured at the left and right side of the pipe-roof after installing earth pressure cells. As a result, lateral earth pressure was measured with considerable reduction because the integrated pipe-roof shared surcharge. Therefore, economic design for the underpass could be expected by sharing design load by pipe-roof. In addition, construction cost was analyzed according to the design-load sharing ratio by pipe-roof. As pipe-roof shares design load by 40%, the total construction cost can decrease by almost 10% in the case of four-lane underpass.

Analysis of Isochrone Effect of Clayey Soils using Numerical Analysis (수치해석을 이용한 점성토 지반의 아이소크론 영향 분석)

  • Lee, Yun-Sic;Lee, Jong-Ho;Lee, Kang-Il
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.84-97
    • /
    • 2019
  • Purpose: The consolidation settlement of soft ground is dependent on the distribution of pore water pressure which is also affected by hydraulic conductivities (boundary condition) of layers, thickness of clayey soil layer and surcharge. Results: However, the current consolidation analyses are mostly based on Terzaghi's consolidation theory that assumes the initial pore water pressure ratio with depth to be constant. In this study, numerical analysis are carried out to investigate the variation of pore water pressure dissipation with depth and thickness of clayey soil layer, time, surcharge as well as drainage conditions. Conclusion: Comparative study with Terzaghi's consolidation theory is also conducted. The result shows that Terzaghi's consolidation theory should be used with caution unless it is ideally corresponded to the isochrone.

Consolidation Characteristics of Soft Ground in Suction Drain Method (석션드레인공법이 적용된 연약지반의 압밀특성에 관한 사례 분석)

  • Kim, Byung Il;Kim, Do Hyung;Kim, Soo Sam;Han, Sang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.287-294
    • /
    • 2009
  • Suction Drain Method is a relatively new technique to improve soft ground using vacuum pressure which can be directly applied to the soft ground through drains that the pore water pressure around them are decreased without changing total stress. This can accelerate volume changes and increase strength of the ground. This paper shows the results of field test of the suction drain method applied at dredged and reclaimed clay. To evaluate the improvement effects of soft ground by the suction drain method, this paper analyzed real-time field measurements to the results of the laboratory tests and numerical analysis. The comparisons of the settlement and shear strength between suction drain method and surcharge preloading method show possibilities for replacement of the preloading methods. The settlements by suction drain method were 2.3 times larger and undrained shear strength were 300%~400% higher than surcharge method. Moreover, the water content is decreased about 30% and the preconsolidation pressure is increased about $0.52kgf/cm^2$.