• Title/Summary/Keyword: Supramolecular structure

Search Result 45, Processing Time 0.02 seconds

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Design of the Artificial Antenna System in Photosynthesis

  • Tamiaki, Hitoshi;Yagai, Shiki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.66-69
    • /
    • 2002
  • Zinc chlorin 1 possessing tertiary 3$^1$_hydroxy and 13$^1$-oxo groups was synthesized as a model for the antenna chlorophylls of photosynthetic green bacteria. Self-aggregation of 1 in nonpolar organic solvents was examined and compared to 2 and 3 possessing a secondary and primary 3$^1$_hydroxy group, respectively. Zinc chlorin 1 self-aggregated in I%(v/v) CH$_2$Cl$_2$-hexane to form oligomers and showed a red-shifted Qy maximum at 704 nm compared to the monomer (648 nm in CH$_2$CI2$_2$). This red-shift is larger than that of 3$^1$S-2 (648 to 697 nm) and comparable to that of3$^1$R-2 (648 to 705 nm), but smaller than that of 1 (648 to 740 nm), indicating that while a single 3$^1$-methyl group (primary to secondary OH) suppressed tight and/or extended aggregation, the additional 3$^1$-methyl group (secondary to tertiary OH) did not further suppress aggregation. The relative stability of the aggregates was in the order 3> 3$^1$R-2∼ 1 > 3$^1$S-2 as determined by visible spectral analyses. Molecular modeling calculations on oligomers of zinc chlorins 1, 3$^1$ R-2 and 3 gave similar well-ordered energy-minimized structures, while 3 stacked more tightly than 3$^1$ R- 2 and 1. In contrast, 3$^1$S-2 gave a relatively disordered (twisted) structure. The calculated oligomeric structures could explain the visible spectral data of 1-3 in nonpolar organic solvents. Moreover, self- aggregation of synthetic zinc 13$^1$_oxo-hlorins 4-6 possessing a 2-hydroxyethyl, 3-hydroxypropyl and 3- hydroxy-I-propenyl group at the 3-position in nonpolar organic solvents was discussed.

  • PDF

A Novel Selenium- and Copper-Containing Peptide with Both Superoxide Dismutase and Glutathione Peroxidase Activities

  • Zou, Xian-Feng;Ji, Yue-Tong;Gao, Gui;Zhu, Xue-Jun;Lv, Shao-Wu;Yan, Fei;Han, Si-Ping;Chen, Xing;Gao, Chang-Cheng;Liu, Jun-Qiu;Luo, Gui-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2010
  • Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide was converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) that displayed both SOD and GPX activities, and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by the xanthine oxidase (XOD)/xanthine/$Fe^{2+}$ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part II); Synthesis and Characterization of Cr(III)-Citrato Macrocyclic Complex

  • Byun, Jong-Chul;Park, Yu-Chul;Youn, Jeung-Su;Han, Chung-Hun;Lee, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.634-640
    • /
    • 2005
  • The reaction of cis-[Cr([14]-decane)(OH$_2)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = citrate(cit)} leads to a new dimeric complex cis-[{Cr([14]-decane)($\mu$-cit)}$_2](ClO_4)_2$. This binuclear complex has been structurally characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[{Cr([14]-decane)($\mu$-cit)})($_2]^+$ reveals that each chromium has a distorted octahedral coordination environment and citrato ligands are monodentate to the two chromium atoms via the carboxyl groups. For dimeric complex the bridging geometry is as follows: Cr$\ldots$Cr = 7.361 $\AA$; Cr-O(average) = 1.958 (8) $\AA$; Cr-N range = 2.108 (9)-2.147(9) $\AA$; N(1)-Cr-N(3) (equatorial position) = 98.0(4)$^{\circ}$; N(2)-Cr-N(4) (axial position) = 166.4(4)$^{\circ}$; O(1)-Cr-N(2) = 98.1(4)$^{\circ}$; O(3)-Cr-N(4) = 96.6(3)$^{\circ}$; O(1)-Cr-O(3) = 90.4$^{\circ}$. The FAB mass spectrum of the dimeric complex displays peak due to the molecular ions cis-[{Cr([14]-decane)($\mu$-cit)})($_2]^+$ at m/z 1053.

Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2

  • Wang, Yu-Shi;Zhu, Hongyan;Li, He;Li, Yang;Zhao, Bing;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.452-459
    • /
    • 2019
  • Background: Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B ($NF-{\kappa}B$) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. Methods: Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for $NF-{\kappa}B$, immunofluorescence imaging for the subcellular localization of Annexin A2 and $NF-{\kappa}B$ p50 subunit, coimmunoprecipitation of Annexin A2 and $NF-{\kappa}B$ p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. Results: Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and $NF-{\kappa}B$ p50 subunit and their nuclear colocalization, which attenuated the activation of $NF-{\kappa}B$ and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. Conclusion: This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.