• Title/Summary/Keyword: Suppressor of cytokine signaling-3

Search Result 14, Processing Time 0.035 seconds

Lack of Prognostic Significance of SOCS-1 Expression in Colorectal Adenocarcinomas

  • Ayyildiz, Talat;Dolar, Enver;Adim, Saduman Balaban;Eminler, Ahmet Tarik;Yerci, Omer
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8469-8474
    • /
    • 2014
  • Introduction: Recent studies have indicated that down-regulation of the suppressor of cytokine signaling-1 (SOCS-1) gene results in tumor formation and that SOCS-1 acts as a tumor suppressor gene. SOCS-1 has been also suggested to function as a tumor suppressor with colorectal cancer. Objectives: In the present study, we aimed to determine the association of SOCS-1 expression in colorectal cancer tissues with clinicopathologic characteristics immunohistochemically and also to identify its prognostic significance. Materials and Methods: SOCS-1 expression was studied immunohistochemically in 67 patients diagnosed with resected colorectal carcinomas and 30 control subjects. Results: SOCS-1 expression was found in 46.3% of tumor tissues and 46.7% of the control group. Statistical analyses did not establish any significant association between SOCS-1 expression and clinicopathologic characteristics. Also, no significant association with SOCS-1 expression was found using progression-free survival and overall survival analyses (p=0.326 and p=0.360, respectively). Conclusions: Our results show that SOCS-1 has no prognostic significance in colorectal cancer.

Fiber Type Specific Expression of Toll-like Receptor4, IL-6, TNF-α, and Suppressor of Cytokine Signaling-3 after Acute Exercise in Rat Skeletal Muscles (일회성 유산소운동 후 쥐의 골격근에서 toll-like receptor4, IL-6, TNF-α 및 suppressor of cytokine signaling-3의 근섬유 형태 특이적 발현)

  • Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1259-1265
    • /
    • 2011
  • The purpose of this study was to determine whether a single bout of aerobic exercise affects the expression level of toll-like receptor4 (TLR4), IL-6, TNF-${\alpha}$, and suppressor of cytokine signaling-3 (SOCS-3) expression in rat hindlimb muscles depending on fiber types. To accomplish this, thirteen 7-wk Balb/c male mice were randomly assigned to an experimental group or a control group. The exercise protocol consisted of a single bout of treadmill exercise (inclination $10^{\circ}$, speed 17 cm/sec 10 min, 33 cm/sec 10 min, 50 cm/sec) and the animals were killed 24 hr after the exhaustion protocol. The level of TLR4, IL-6, TNF-${\alpha}$, and SOCS-3 mRNA expression was measured by quantitative real-time PCR in soleus and plantaris muscles. A single bout of aerobic treadmill exercise increased TLR4 mRNA expression in the soleus muscle (p<0.05), whereas plantaris TLR4 mRNA expression did not change. Additionally, acute exercise led to a significant increase in IL-6, TNF-${\alpha}$, and SOCS-33 mRNA in the soleus muscle, while transcripts of these genes were not affected by exercise in the plantaris muscle. In conclusion, expression level of several immune-related genes such as TLR4, cytokines, and SOCS-3 is regulated by acute exercise in a fiber type specific manner.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

Effects of Insulin-Like Growth Factor-I on Expression of Suppressor of Cytokine Signaling-3 in C2C12 Myotube (C2C12 myotube에서 insulin-like growth factor-I이 SOCS-3 유전자 발현에 미치는 영향)

  • Kim, Hye-Jin;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1385-1392
    • /
    • 2011
  • It is well known that both insulin-like growth factor-I and suppressor of cytokine signaling-3 (SOCS-3) are known to modulate various aspects of physiology in skeletal muscle cells. Furthermore, although SOCS-3 expression is related to insulin resistance in non-skeletal muscle cells and is known to interact with insulin-like growth factor-I receptor, the effect of IGF-I on SOCS-3 gene expression in skeletal muscle cells is presently unknown. C2C12 myotubes were treated with different concentrations (0-200 ng/ml) of IGF-I or for various periods of time (3-72 hr). Immunofluorescent staining image revealed that IGF-I induced SOCS-3 protein expression in a dose-dependent manner. Western blot data also showed that SOCS-3 proteins were induced by IGF-I (200 ng/ml) in C2C12 myotubes in a time-dependent manner. The level of SOCS-3 mRNA was also significantly increased after 3hr of IGF-I (10-100 ng/ml) treatment. However, the levels of SOCS-3 mRNA were significantly decreased after 24 and 48 hr of IGF-I (10-100 ng/ml) treatment compared to the control. In conclusion, SOCS-3 protein is induced by IGF-I treatment in C2C12 skeletal muscle cells and this induction is regulated pretranslationally. The modulating effect of IGF-I on SOCS-3 expression may be an important regulator of gene expression in skeletal muscle cells.

Significance of Suppressor of Cytokine Signaling-3 Expression in Bladder Urothelial Carcinoma in Relation to Proinflammatory Cytokines and Tumor Histopathological Grading

  • Gaballah, Hanaa Hibishy;Shafik, Noha Mohamed;Wasfy, Rania Elsayed;Farha, Mohamed Osama Abou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.307-314
    • /
    • 2015
  • Background: Bladder cancer is among the five most common malignancies worldwide. Altered expression of suppressor of cytokine signaling -3 (SOCS-3) has been implicated in various types of human cancers; however, its role in bladder cancer is not well established. Aim: The present study was undertaken to investigate the mRNA expression of SOCS-3 in normal and cancerous bladder tissue and to explore its correlation with urinary levels of some proinflammatory cytokines, cytokeratin-18 (CK -18) and with tumor histopathological grading, in order to evaluate their role as potential diagnostic markers. Materials and Methods: SOCS3 mRNA expression levels were evaluated using quantitative real time PCR. Urinary levels of interleukins 6 and 8 were estimated by enzyme linked immunosorbent assay (ELISA). Cytokeratin-18 expression was analyzed by immuunohistochemistry then validated by ELISA. Results: SOC3 m RNA expression levels were significantly lower in high grade urothelial carcinoma ($0.36{\pm}0.12$) compared to low grade carcinoma ($1.22{\pm}0.38$) and controls ($4.08{\pm}0.88$), (p<0.001). However, in high grade urothelial carcinoma the urinary levels of IL-6, IL-8, total CK-18($221.33{\pm}22.84pg/ml$, $325.2{\pm}53.6pg/ml$, $466.7{\pm}57.40U/L$ respectively) were significantly higher than their levels in low grade carcinoma ($58.6{\pm}18.6pg/ml$, $58.3{\pm}50.2pg/ml$, $185.5{\pm}60.3U/L$ respectively) and controls ($50.9{\pm}23.0pg/ml$, $7.12{\pm}2.74pg/ml$, $106.7{\pm}47.3U/L$ respectively), (p<0.001). Conclusions: Advanced grade of urothelial bladder carcinoma is significantly associated with lowered mRNA expression of SOC3 as well as elevated urinary levels of proinflammatory cytokines and CK-18. Furthermore, our results suggested that urinary IL-8, IL-6 and CK-18 may benefit as noninvasive biomarkers for early detection as well as histopathological subtyping of urothelial carcinoma.

Molecular characterization and expression of suppressor of cytokine signaling (SOCS) 1, 2 and 3 under acute hypoxia and reoxygenation in pufferfish, Takifugu fasciatus

  • Wang, Dan;Wen, Xin;Zhang, Xinyu;Hu, Yadong;Li, Xinru;Zhu, Wenxu;Wang, Tao;Yin, Shaowu
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1225-1235
    • /
    • 2018
  • Hypoxia seriously affects the innate immune system of fish. However, the roles of suppressor of cytokine signaling (SOCS), pivotal anti-inflammatory genes, in response to hypoxia/reoxygenation remain largely unexplored. The primary objective of this study was to elucidate the function of SOCS genes under acute hypoxia and reoxygenation in pufferfish (Takifugu fasciatus). In the present study, SOCS1, 2 and 3 were identified in T. fasciatus referred to as TfSOCS1, 2 and 3. Then, qRT-PCR and western blot analysis were employed to assess their expressions at both the mRNA and protein levels. Tissue distribution demonstrated that the three SOCS genes were predominantly distributed in gill, brain and liver. Under hypoxia challenge ($1.63{\pm}0.2mg/L$ DO for 2, 4, 6 and 8 h), the expressions of TfSOCS1 and 3 in brain and liver at the mRNA and protein levels were significantly decreased, while their expressions showed an opposite trend in gill. Different from the expressions of TfSOCS1 and 3, the expression of TfSOCS2 was inhibited in gill, along with its increased expression in brain and liver. After normoxic recovery ($7.0{\pm}0.3mg/L$ of DO for 4 and 12 h), most of TfSOCS genes were significantly altered at R4 (reoxygenation for 4 h) and returned to the normal level at R12 (reoxygenation for 12 h). SOCS genes played vital roles in response to hypoxia/reoxygenation challenge. Our findings greatly strengthened the relation between innate immune and hypoxia stress in T. fasciatus.

Decreased Expression of the Suppressor of Cytokine Signaling 6 in Human Hepatocellular Carcinoma

  • Bae, Hyun-Jin;Noh, Ji-Heon;Eun, Jung-Woo;Kim, Jeong-Kyu;Jung, Kwang-Hwa;Xie, Hong Jian;Ahn, Young-Min;Ryu, Jae-Chun;Park, Won-Sang;Lee, Jung-Young;Nam, Suk-Woo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • Suppressors of cytokine signaling (SOCS) proteins were originally identified as negative feedback regulators of cytokine signaling and include the Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathways. Recent studies have shown that SOCS proteins negatively regulate the receptor tyrosine kinase (RTK) pathway including the insulin receptor (IR), EGFR, and KIT signaling pathways. In addition, SOCS1 and SOCS3 have been reported to have anti-tumor effects in human hepatocellular carcinoma (HCC). However, it is uncertain whether other members of the SOCS family are associated with tumor development and progression. In this study, to investigate whether SOCS6 is aberrantly regulated in HCC, we examined the expression level of SOCS6 in HCC by Western blot analysis and immunohistochemical staining. The results showed that SOCS6 was down-regulated in all examined HCCs compared to the corresponding normal tissues. In addition, expression of SOCS6 was observed in the cytoplasm of most normal and precancerous tissue, but not in the HCCs by immunohistochemical staining. This is first report to demonstrate that SOCS6 is aberrantly regulated in HCC. These findings suggest that underexpression of SOCS6 is involved in hepatocarcinogenesis, and SOCS6 may play a role, as a tumor suppressor, in HCC development and progression.

The Role of Gastrokine 1 in Gastric Cancer

  • Yoon, Jung Hwan;Choi, Won Suk;Kim, Olga;Park, Won Sang
    • Journal of Gastric Cancer
    • /
    • v.14 no.3
    • /
    • pp.147-155
    • /
    • 2014
  • Homeostatic imbalance between cell proliferation and death in gastric mucosal epithelia may lead to gastritis and gastric cancer. Despite abundant gastrokine 1 (GKN1) expression in the normal stomach, the loss of GKN1 expression is frequently detected in gastric mucosa infected with Helicobacter pylori, as well as in intestinal metaplasia and gastric cancer tissues, suggesting that GKN1 plays an important role in gastric mucosal defense, and the gene functions as a gastric tumor suppressor. In the stomach, GKN1 is involved in gastric mucosal inflammation by regulating cytokine production, the nuclear factor-${\kappa}B$ signaling pathway, and cyclooxygenase-2 expression. GKN1 also inhibits the carcinogenic potential of H. pylori protein CagA by binding to it, and up-regulates antioxidant enzymes. In addition, GKN1 reduces cell viability, proliferation, and colony formation by inhibiting cell cycle progression and epigenetic modification by down-regulating the expression levels of DNMT1 and EZH2, and DNMT1 activity, and inducing apoptosis through the death receptor-dependent pathway. Furthermore, GKN1 also inhibits gastric cancer cell invasion and metastasis via coordinated regulation of epithelial mesenchymal transition-related protein expression, reactive oxygen species production, and PI3K/Akt signaling pathway activation. Although the modes of action of GKN1 have not been clearly described, recent limited evidence suggests that GKN1 acts as a gastricspecific tumor suppressor. This review aims to discuss, comment, and summarize the recent progress in the understanding of the role of GKN1 in gastric cancer development and progression.

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.