• Title/Summary/Keyword: Suppression Subtractive Hybridization (SSH)

Search Result 42, Processing Time 0.026 seconds

The Hypernodulating nts Mutation Induces Jasmonate Synthetic Pathway in Soybean Leaves

  • Seo, Hak Soo;Li, Jinjie;Lee, Sun-Young;Yu, Jae-Woong;Kim, Kil-Hyun;Lee, Suk-Ha;Lee, In-Jung;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.185-193
    • /
    • 2007
  • Symbiotic nitrogen fixation with nitrogen-fixing bacteria in the root nodules is a distinctly beneficial metabolic process in legume plants. Legumes control the nodule number and nodulation zone through a systemic negative regulatory system between shoot and root. Mutation in the soybean NTS gene encoding GmNARK, a CLAVATA1-like serine/threonine receptor-like kinase, causes excessive nodule development called hypernodulation. To examine the effect of nts mutation on the gene expression profile in the leaves, suppression subtractive hybridization was performed with the trifoliate leaves of nts mutant 'SS2-2' and the wild-type (WT) parent 'Sinpaldalkong2', and 75 EST clones that were highly expressed in the leaves of the SS2-2 mutant were identified. Interestingly, the expression of jasmonate (JA)-responsive genes such as vspA, vspB, and Lox2 were upregulated, whereas that of a salicylate-responsive gene PR1a was suppressed in the SS2-2 mutant. In addition, the level of JA was about two-fold higher in the leaves of the SS2-2 mutant than in those of the WT under natural growth conditions. Moreover, the JA-responsive gene expression persists in the leaves of SS2-2 mutant without rhizobia infection in the roots. Taken together, our results suggest that the nts mutation increases JA synthesis in mature leaves and consequently leads to constitutive expression of JA-responsive genes which is irrelevant to hypernodulation in the root.

Identification and Screening of Gene(s) Related to Susceptibility to Enterotoxigenic Escherichia coli F4ab/ac in Piglets

  • Li, Hejun;Li, Yuhua;Qiu, Xiaotian;Niu, Xiaoyan;Liu, Yang;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.489-493
    • /
    • 2008
  • In 2004, Jorgensen and coworkers proposed the MUC4 gene as a candidate gene of enterotoxigenic Escherichia coli (ETEC) F4ab/ac receptor in piglets and a mutation of $G{\rightarrow}C$ in intron 7 of MUC4 was identified to be associated with the ETEC F4ab/ac adhesion phenotypes. In this study, we used 310 piglets of three breeds (Landrace, Large White and Chinese Songliao Black) to analyze the relationship between this mutation and the F4ab/ac adhesion phenotype. The results show that the genotypes at this site and the ETEC F4ab/ac adhesion phenotypes were not completely consistent, although they are very strongly associated. Among the individuals with genotype CC, which was identified as a resistant genotype to F4ab/ac adhesion, only 72.1% (124/172) were non-adhesive to ETEC F4ab and 77.9% (134/172) were non-adhesive to ETEC F4ac infections. This suggests that this mutation may not be the causative mutation for ETEC F4ab/ac adhesion, rather, the actual causative mutation may be in another gene closely linked to MUC4, or at aother site within the MUC4 gene. Our results also suggest that the receptors of F4ab and F4ac may be determined by two different but closely linked loci. In order to screen other genes related to F4ab/ac adhesion in piglets, the mRNA profiles from six full sib piglets, of which three were adhesive to ETEC F4ab/ac and three non-adhesive, were analyzed by suppression subtractive hybridization (SSH). One up-regulated gene, Ep-CAM, was selected for further analysis based on its role in the intestinal epithelial cells adhesion. Using real-time RT-PCR, we found that the Ep-CAM gene was significantly up-regulated in the piglets adhesive to F4ab/ac. It was mapped to SSC3q11-q14 by radiation hybrid mapping.