• Title/Summary/Keyword: Supporting bone stress

Search Result 74, Processing Time 0.027 seconds

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

FINITE ELEMENT ANALYSIS OF STRESSES AND DEFLECTIONS INDUCED BY FIXED PARTIAL DENTURE USING ENDOSTEAL IMPLANT (골내 임프란트를 이용한 고정성 국소의치 하에서 변위 및 응력에 관한 유한요소법적 분석)

  • Choi, Su-Ho;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.233-248
    • /
    • 1991
  • The purpose of this study was to qunatatively analyze the stress patterns induced in the abutment, superstructure, supporting bone and to determine the deflection of abutment and superstructure by appling occlusal force to natural teeth supported fixed prostheses and implant-supported fixed prostheses. The analysis has been conducted by using the two dimensional finite element method. The implant and natural tooth-supported bridge has a first molar pontic supported by mandibular second bicuspid and implant posterior retainer, which were rigidly(Model A) or flexible(Model B). The natural teeth-supported bridge has a first molar pontic supported by mandibular second bicuspid and second molar, which were rigidly splinted together(Model C). 63.5kg(Load P1) of localized load on central fossa of first molar pontic and 24kg(Load P2) of distributed load on each occlusal surface were applied respectively. 1. The coronal portion of premolar pontic and posterior abutment in fixed partial denture deflected inferiorly in order of Model B, Model C and Model A under Load P1 and Load P2. 2. Mesial displacement of the coronal portion of premolar showed in Model A, Model B and Model C under Load P1, but mesial displacement of that in Model B and distal displacement of that in Model A and Model C showed under Load P2. 3. Mesial displacement of the coronal portion of the pontic and distal displacement of the coronal portion of posterior abutment showed in Model A, Model B and Model C under Load P1 and Load P2. Displacement in the case of Model B was greater than that of Model A and Model C. 4. In the case Model A under Load P1 and Load P2, high stress apically was concentrated in the mesiocervical portion of the posterior abutment than in the disto-cervical portion of the premolar. 5. In the case of Model B under Load P1 and Load P2 high stress was concentrated in the case of the premolar than in that of posterior abutment and high stress especially was concentrated in the connected portion of pontic and posterior abutment. 6. In the case of Model C under Load P1 and Load P2, high stress was concentrated in the distal area of the cornal portion of premolar and the mesial area of the coronal portion of posterior abutment, and stress pattern was anteroposterially symmetric around the pontic. 7. Load P1 and Load P2 compared, stress magnitude was different but stress pattern was similar in Model A, Model B and Model C. 8. Under Load P1 and P2, stress magnitude in the mesial distal portion and the portion of root apex of the posterior abutment was in order of Model B, Model A and Model C.

  • PDF

The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant (나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향)

  • Lee, Jae-In;Kim, Tae-Young;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.224-235
    • /
    • 2013
  • A passively fitting prosthesis is an essential prerequisite to attain long-lasting success and maintenance of osseointegration. However, true "passive fit" can not be achieved with the present implant-supported prosthesis fabrication protocol. Many clinical situations are suitably treated with cantilevered implant-supported fixed restorations. The purpose of this study was to compare the stress distribution pattern and magnitude in supporting tissues around ITI implants with cantilevered, implant-supported, screw-retained fixed prosthesis according to the fitness of superstructures. Photoelastic model was made with PL-2 resin (Measurements, Raleigh, USA) and three ITI implants (${\phi}4.1{\times}10mm$) were placed in the mandibular posterior edentulous area distal to the canine. Anterior and posterior extended 4-unit cantilevered FPDs were made with different misfit in the superstructures. 4 types of prosthesis were made by placing a $100{\mu}m$ gap between the abutment and the crown on the second premolar and/or the first molar. Photoelastic stress analysis were carried out to measure the fringe order around the implant supporting structure under simulated loading conditions (30 lb).

A STUDY ON COMPARISON OF VARIOUS KINDS OF CLASSII AMALGAM CAVITIES USING FINITE ELEMENT METHOD (유한요소법을 이용한 수종 2급 아말감 와동의 비교연구)

  • Seok, Chang-In;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.432-461
    • /
    • 1995
  • The basic principles in the design of Class II amalgam cavity preparations have been modified but not changed in essence over the last 90 years. The early essential principle was "extension for prevention". Most of the modifications have served to reduce the extent of preparation and, thus, increase the conservation of sound tooth structure. A more recent concept relating to conservative Class II cavity preparations involves elimination of occlusal preparation if no carious lesion exists in this area. To evaluate the ideal ClassII cavity preparation design, if carious lesion exists only in the interproximal area, three cavity design conditions were studied: Rodda's conventional cavity, simple proximal box cavity and proximal box cavity with retention grooves. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method. Linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B option, Gap option and R option model) were developed. B option model was assumed perfect bonding between the restoration and cavty wall. Gap option model(Gap distance: $2{\mu}m$) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). R option model was assumed non-connection between the restoration and cavty wall. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as followed. 1. Rodda's cavity form model showed greater amount of displacement with other two models. 2. The stress and strain were increased on the distal marginal ridge and buccopulpal line angle in Rodda's cavity form model. 3. The stress and strain were increased on the central groove and a part of distal marginal ridge in simple proximal box model and proximal box model with retention grooves. 4. With Gap option, Rodda's cavity form model showed the greatest amount of the stress on distal marginal ridge followed by proximal box model with retention grooves and simple proximal box model in descending order. 5. With Gap option, simple proximal box model showed greater amount of stress on the central groove with proximal box model with retention grooves. 6. Retention grooves in the proximal box played the role of supporting the restorations opposing to loads.

  • PDF

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES INDUCED BY OVERDENTURE WITH DIFFERENT DESIGNS OF ABUTMENT COPINGS (지대치 coping형태에 따른 overdenture하에서 하악 응력에 관한 유한요소법적 분석)

  • Park Hae-Kyoon;Chung Chae-Heon;Cho Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.141-170
    • /
    • 1991
  • This study was to analyze the displacement and the magnitude and mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment teeth and the mandibular supporting bone when various abutment designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. The models of overdenture and mandibe with the canine and the second premolar remaining, were fabricated. In the first design, a 1 mm space was prepared between the denture and the dome abutment with the height of 2 mm(OS). In the second design, a contact between the denture and the occlusal third of the dome abutment with the hight of 2 mm was prepared(OC). In the third design, a 0.5 mm space was prepared between the denture and 8 degree tapered cylindrical abutments with the height of 7 mm(TS). In the fourth design, a contact between the denture and the occlusal two thirds of the conical abutments with the height of 7 mm was prepared(TC). In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 Kgs on the first molar region (P1) and 7 Kgs on the central incisor region (P2) in a vertical direction. The force of 10 Kgs was then applied distributively from the first premolar to the second molar of each motel in a vertical direction (P3). The results were as follows: 1. The vertical load on the central incisor region(P2) produced the higher displacement and stress concentration than that on the posterior region(P1, P3). 2. The case of space between abutment and denture base produced higher displacement than that of contact, and the case of long abutment produced higher displacement than that of short abutment because of low rigidity of denture base. 3. The magnitude of the torque and vertical force to the abutment teeth and the stress distribution to the denture base was higher in the telescope coping than in the overdenture coping. 4. The vertical load on the central incisor region(P2) produced higher equivalent stress in the mandible than that on the posterior region(P1, P3). 5. The case of space between abutment and denture base produced better stress distribution to the farther abutment from the loading point than that of contact. 6. In case of sound abutment teeth, the type of telescope coping can be used, hilt in case of weak abutment, the type of overdenture coping is considered to be favorable generally.

  • PDF

A FINITE ELEMENT ANALYSIS ON THE 3-UNIT FIXED PROSTHESIS SUPPORTED WITH A NATURAL TOOTH AND ANGLE VARIABLE IMPLANT (고정성 보철치료에서 골유착성 임프란트의 경사도변화에 따른 변위와 응력에 관한 유한요소적 연구)

  • Ko Hyun;Woo Yi-Hyung;Park Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.580-610
    • /
    • 1993
  • The purpose of this study was to analyse the deflection and stress distribution at the supporting bone and it's superstructure by the alteration of angulation between implant and it's implant abutment. For this study, the free-end saddle case of mandibular first and second molar missing would be planned to restore with fixed prosthesis. So the mandibular second premolar was prepared for abutment, and the cylinder type osseointegrated implant was placed at the site of mandibular second molar for abutment. The finite element stress analysis was applied for this study. 13 two-dimensional FEM models were created, a standard model at $0^{\circ}$ and 12 models created by changing the angulation between implant and implant abutment as increasing the angulation mesially and distally with $5^{\circ}$ unittill $30^{\circ}$. The preprocessing decording, solving and postprocessing procedures were done by using FEM analysis software PATRAN and SUN-SPARC2GX. The deflections and von Mises stresses were calculated under concentrated load (load 1) and distributed load(load 2) at the reference points. The results were as follows : 1. Observing at standard model, the amount of total deflection at the distobuccal cusp-tip of pontic under concentrated load was largest of all, and that at the apex of implant was least of all, and the amount of total deflection at the buccal cusp-tip of second premolar under distributed load was largest of all, and that at the apex of implant was least of all. 2. Increasing the angulation mesially or distally, the amounts of total deflection were increased or decreased according to the reference points. But the order according to the amount of total deflection was not changed except apex of second premolar and central fossa of implant abutment under concentrated load during distal inclination. 3. Observing at standard model, the von Mises stress at the distal joint of pontic under concentrated load was largest of all, and that at the apex of implant was least of all. The von Mises stress at the distal margin of second premolar under distributed load was largest of all, and that at the apex of Implant was least of ail. 4. Increasing the angulation of implant mesially, the von Mises stresses at the mesial crest of implant were increased under concentrated load and distributed load, but those were increased remarkably under distributed load and so that at $30^{\circ}$ mesial inclination was largest of all. 5. Increasing the angulation of implant distally, the von Mises stresses at the distal crest of implant were increased remarkably under concentrated load and distributed load, and so those at $30^{\circ}$ distal inclination were largest of all.

  • PDF

PHOTOELASTIC ANALYSIS OF STRESS INDUCED BY FIXED PROSTHESES WITH RIGID OF NONRIGID CONNECTION BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED IMPLANT (골육착성 보철 치료시 임플랜트와 자연 지대치와의 연결 방법에 따른 관탄성 응력 분석)

  • Kim, Young-Il;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.271-300
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstrcture. This investigation evaluated the stress patterns in a photoelastic model produced by three different types of dental implants such as Branemark, Steri-Oss, IMZ and resin tooth using the techniques of quasi three dimensional photoelasticity. The teeth-supported bridge had a first molar pontic supported by second premolar and second molar as a control group. The implant and toothsupported bridge had a first molar pontic supported by second premolar and implant posterior retainer as an experimental group. Prostheses were mechanically connected to an adjacent second premolar by the rigid of nonrigid connection, Nonrigid connection used an attachment placed between the tooth-supported and fixture-supported component. The female(keyway) of attachment was placed on the distal end of the retainer supported by the tooth ; the male(Key) of attachment connected to the osseointegrated bridge was engaged into the keyway. All prostheses were casted in the same nonprecious alloy and were cemented and screwed on their respective abutments and implants. 16㎏ of vertical loads on central fossae of second premolar, first molar pontic, implant of second molar were applied respectively and 6.5㎏ of inclined load on middle buccal surface of first molar pontic was applied. The results were as follows : 1. Under the vertical load on the central fossa of first mloar pontic, the stress developed at the apex of tooth of implat was more uniformly distributed in the case of nonrigid connection than in the case of rigid connection. 2. Under the vertical load on the central fossa of first molar pontic, the stress developed around the cervical area of tooth of implant was larger in the case of rigid connection than in the case of nonrigid connection because the bending moment was more occured in the case of rigid connection than in the case of nonrigid connection. 3. Stress was more restricted to the loaded side of nonrigid connection than to that of rigid connection 4. Under the inclined load. The set screw loosening of implant was more easily occured in the case of nonrigid connection than in the case of rigid connection due to torque moment. 5. In the case of Branemark implant, the stress concentration in second premolar was larger and the stress developed around the cervical area of implant was lower than any other cases under the vertical load, because Branemark implant with the flexible gold screw was showed in incline toward second premolar by a bending moment. 6. The stress developed around the apex of tooth or implant was more uniformly distributed in the case of Steri-Oss implant with stiff screw than in the case of Branemark implant under the vertical load. But, the stress developed around the cervical area of the Steri-Oss implant was larger than that of any other implants because bending moment was occured by vertical migration of second premolar. 7. The stress distribution in the case of IMZ implant was similar to the case of natural teeth under small vertical load. But, the residual stress around the implant was showed to occurdue to deformation of IMC and sinking of screw under larger vertical load.

  • PDF

Overdenture treatment in patient with severely worn dentition: a case report (심한 마모를 보이는 환자에서의 자연치 피개의치 수복증례)

  • Kim, Min-Ji;Kim, Jun-Yub;Yang, Hong-So;Lim, Hyun-Pil;Yun, Kwi-Dug;Park, Chan;Shin, Jin-Ho;Park, Sang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.307-313
    • /
    • 2016
  • Overdenture is one of the methods of patients with severely worn dentition. Remaining natural teeth help preserve alveolar bone and proprioception and provide rigid support. Also, overdenture distributes the concentrated stress applied to the abutment tooth and denture supporting tissues. There is an advantage that it can provide long-term stability to denture. In this case, the patient with only a few teeth due to severe wear and caries was satisfied with good function and favorable esthetics by using overdenture.