• 제목/요약/키워드: Supported metal catalyst

검색결과 122건 처리시간 0.031초

디젤엔진 배기가스조건하에서의 Pt 및 Ag 담지 알루미나 촉매의 열적 노화 특성과 SOx 피독 특성에 관한 연구 (A Study on the Thermal Aging and SOx Poisoning Characteristics on Alumina Supported Silver Catalyst under Diesel Engine Emission Condition)

  • 신병선
    • 한국대기환경학회지
    • /
    • 제16권2호
    • /
    • pp.199-208
    • /
    • 2000
  • In this study we investigated on the possibility of platinum and silver catalysts as de-NOx catalyst for activity test of supported metal oxide catalysts. the study was performed with the change of amount of metal and support types. The catalyst was prepared the activity of alumina supported silver catalyst produced by dry and wet impregnation method respectively and the resistance of sulfur for optimum supported silver catalyst,. As a result the activity of alumina supported platinum catalyst was showed at low temperature region but the case of silver catalyst activated at high temperature region. So we finally chose alumina supported silver catalyst as de-NOx target catalyst because alumina supported catalyst showed higher activity than alumina supported platinum catalyst.

  • PDF

저농도 메탄 연소에서 상용 금속촉매의 활성 (Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane)

  • 이경환;박재현;송광섭
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

Oxidation of Ethylbenzene Using Nickel Oxide Supported Metal Organic Framework Catalyst

  • Peng, Mei Mei;Jeon, Ung Jin;Ganesh, Mani;Aziz, Abidov;Vinodh, Rajangam;Palanichamy, Muthiahpillai;Jang, Hyun Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3213-3218
    • /
    • 2014
  • A metal organic framework-supported Nickel nanoparticle (Ni-MOF-5) was successfully synthesized using a simple impregnation method. The obtained solid acid catalyst was characterized by Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption and thermogravimetric analysis (TGA). The catalyst was highly crystalline with good thermodynamic stability (up to $400^{\circ}C$) and high surface area ($699m^2g^{-1}$). The catalyst was studied for the oxidation of ethyl benzene, and the results were monitored via gas chromatography (GC) and found that the Ni-MOF-5 catalyst was highly effective for ethyl benzene oxidation. The conversion of ethyl benzene and the selectivity for acetophenone were 55.3% and 90.2%, respectively.

Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용 (Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications)

  • 문동주;류종우;유계상;이병권
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

디젤엔진 배기가스중 질소산화물 저감을 위한 금속 산화물 촉매를 이용한 실험적 연구 (An Experimental Study on the Reduction of Nitric Oxides from the Diesel Engine Exhaust Gas with Metal Supported Oxides Catalysts)

  • 채재우;황재원;정지용;한정희;황화자;김석
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.68-75
    • /
    • 2001
  • In this paper, a number of supported metal oxides and perovskite type catalysts were investigated for the NOx reduction from the diesel engine exhaust gas. All catalysts were made into pellets type with diameter of 3-4 mm alumina(Al$_2$O$_3$) as a supporter. These samples were tested by real diesel exhaust gas which contains CO, hydrocarbons and soot in the temperature range of 150~55$0^{\circ}C$ with the $3300h^{-1}$ space velocity (SV). Among the results, several promising catalysts showed NOx conversion above 50% in the temperature range of 150-35$0^{\circ}C$. From these results supported metal oxides catalysts and perovskite type could be recommended for the practical application to the automobile exhaust treatments.

  • PDF

PET 직물을 매트릭스로 이용한 Fixed Site Carrier Membrane의 금속이온 투과성 (Fixed Site Carrier Membrane for selective metal ion transport, supported by PET fabric)

  • Kim, Yong-Yl;Soukil Mah
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.219-222
    • /
    • 2001
  • Membranes which selectively transport specific metals on an industrial scale is much useful in a number of applications, such as aqueous stream purification, catalyst and recycling of the reactants, the applications in metal ion sensing and so forth. Numerous studies have been already made to use liquid, supported liquid and, emulsion liquid membranes (LM) for selective carriers for metal ion transport. (omitted)

  • PDF

Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조 (Preparation of Pt/C catalyst for PEM fuel cells using polyol process)

  • 오형석;김한성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

백금 담지 촉매상에서 에탄올의 저온연소 (Low-Temperature Combustion of Ethanol over Supported Platinum Catalysts)

  • 김문현
    • 한국환경과학회지
    • /
    • 제26권1호
    • /
    • pp.67-78
    • /
    • 2017
  • Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of $H_2-N_2O$ titration on the supported Pt catalysts with no calcination indicate a metal dispersion of $0.97{\pm}0.1$, corresponding to ca. 1.2 nm, while the calcination of 0.65% $Pt/SiO_2$ at 600 and $900^{\circ}C$ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using $Pt/TiO_2$ and $Pt/SiO_2$ catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to $200^{\circ}C$, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at $80{\sim}200^{\circ}C$ between samples of 0.65% $Pt/SiO_2$ consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of $CO_2$, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% $Pt/SiO_2$ catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at $120^{\circ}C$ even for 12 h, regardless of the space velocity allowed.

부분산화개질 반응에서 촉매의 응집이 촉매 활성에 미치는 영향 (The Effects of Agglomeration of Catalyst on its Activity in Partial Oxidation Reforming)

  • 이상호;윤상호;전승현;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2009
  • Agglomeration of catalysts is known as one of the major degradation mechanisms. Reforming of liquid fuel, which requires high temperature over $800^{\circ}C$, accelerates agglomeration of catalysts. In this work, The effects of agglomeration on catalysts activity in partial oxidation reforming conditions were investigated. Metal supported catalysts(Pt-CGO, Ru-CGO) were compared to perovskite-structured catalysts(NECS-P1, NECS-P2). High thermal stability of perovskite-structured catalysts was reported. Micro-reactor installed in electric furnace was used. its Temperature was raised from $800^{\circ}C$ to $1000^{\circ}C$ to accelerate agglomeration effect. To measure rate of agglomeration, BET analysis and CO pulse chemisorption were conducted on catalysts exposed to $1100^{\circ}C$. Metal supported catalysts showed degradation at $1000^{\circ}C$ and The rates were different according to metal supported. On the other hand perovskite-structured catalysts showed no degradation at $1000^{\circ}C$.

  • PDF

촉매제어를 통한 촉매화학기상증착법으로 성장시킨 탄소나노튜브의 특성분석 (The characteristics of grown carbon nanotubes by controlled catalyst preparation at the catalytic chemical vapor deposition)

  • 김종식;김관하;김창일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1378-1379
    • /
    • 2006
  • Carbon nanotubes (CNTs) with few defects and very small amount of amorphous carbon coating have been synthesized by catalytic decomposition of acetylene in $H_2$ over well-dispersed metal particles supported on MgO. The yield, quality and diameters of CNTs were obtained by control of catalyst metal compositions to be used. The optimization condition of carbon nanotubes with high yield is when Co and Mo are in a 1:1 ratio and Fe metal contents to Co is increased on magnesium oxide support. It is also found that the diameter of the as-prepared CNTs can be controlled mainly by adjusting the molar ratio of Fe-Mo, Co-Fe, and Co-Mo versus the MgO support. Our results indicated that desired diameter distribution of CNTs is obtained by choosing or combining the catalyst to be employed.

  • PDF