• Title/Summary/Keyword: Support vector regression

Search Result 549, Processing Time 0.031 seconds

Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning

  • Arvind, Varun;Kim, Jun S.;Oermann, Eric K.;Kaji, Deepak;Cho, Samuel K.
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.329-337
    • /
    • 2018
  • Objective: Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF). Methods: Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification. Results: A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p < 0.05). Conclusion: ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios.

Exploring the Performance of Synthetic Minority Over-sampling Technique (SMOTE) to Predict Good Borrowers in P2P Lending (P2P 대부 우수 대출자 예측을 위한 합성 소수집단 오버샘플링 기법 성과에 관한 탐색적 연구)

  • Costello, Francis Joseph;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.71-78
    • /
    • 2019
  • This study aims to identify good borrowers within the context of P2P lending. P2P lending is a growing platform that allows individuals to lend and borrow money from each other. Inherent in any loans is credit risk of borrowers and needs to be considered before any lending. Specifically in the context of P2P lending, traditional models fall short and thus this study aimed to rectify this as well as explore the problem of class imbalances seen within credit risk data sets. This study implemented an over-sampling technique known as Synthetic Minority Over-sampling Technique (SMOTE). To test our approach, we implemented five benchmarking classifiers such as support vector machines, logistic regression, k-nearest neighbor, random forest, and deep neural network. The data sample used was retrieved from the publicly available LendingClub dataset. The proposed SMOTE revealed significantly improved results in comparison with the benchmarking classifiers. These results should help actors engaged within P2P lending to make better informed decisions when selecting potential borrowers eliminating the higher risks present in P2P lending.

Estimation of wind pressure coefficients on multi-building configurations using data-driven approach

  • Konka, Shruti;Govindray, Shanbhag Rahul;Rajasekharan, Sabareesh Geetha;Rao, Paturu Neelakanteswara
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.127-142
    • /
    • 2021
  • Wind load acting on a standalone structure is different from that acting on a similar structure which is surrounded by other structures in close proximity. The presence of other structures in the surrounding can change the wind flow regime around the principal structure and thus causing variation in wind loads compared to a standalone case. This variation on wind loads termed as interference effect depends on several factors like terrain category, geometry of the structure, orientation, wind incident angle, interfering distances etc., In the present study, a three building configuration is considered and the mean pressure coefficients on each face of principle building are determined in presence of two interfering buildings. Generally, wind loads on interfering buildings are determined from wind tunnel experiments. Computational fluid dynamic studies are being increasingly used to determine the wind loads recently. Whereas, wind tunnel tests are very expensive, the CFD simulation requires high computational cost and time. In this scenario, Artificial Neural Network (ANN) technique and Support Vector Regression (SVR) can be explored as alternative tools to study wind loads on structures. The present study uses these data-driven approaches to predict mean pressure coefficients on each face of principle building. Three typical arrangements of three building configuration viz. L shape, V shape and mirror of L shape arrangement are considered with varying interfering distances and wind incidence angles. Mean pressure coefficients (Cp mean) are predicted for 45 degrees wind incidence angle through ANN and SVR. Further, the critical faces of principal building, critical interfering distances and building arrangement which are more prone to wind loads are identified through this study. Among three types of building arrangements considered, a maximum of 3.9 times reduction in Cp mean values are noticed under Case B (V shape) building arrangement with 2.5B interfering distance. Effect of interfering distance and building arrangement on suction pressure on building faces has also been studied. Accordingly, Case C (mirror of L shape) building arrangement at a wind angle of 45º shows less suction pressure. Through this study, it was also observed that the increase of interfering distance may increase the suction pressure for all the cases of building configurations considered.

Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics (약물유전체학에서 약물반응 예측모형과 변수선택 방법)

  • Kim, Kyuhwan;Kim, Wonkuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.153-166
    • /
    • 2021
  • A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.

A Best Effort Classification Model For Sars-Cov-2 Carriers Using Random Forest

  • Mallick, Shrabani;Verma, Ashish Kumar;Kushwaha, Dharmender Singh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.

Machine Learning-based Production and Sales Profit Prediction Using Agricultural Public Big Data (농업 공공 빅데이터를 이용한 머신러닝 기반 생산량 및 판매 수익금 예측)

  • Lee, Hyunjo;Kim, Yong-Ki;Koo, Hyun Jung;Chae, Cheol-Joo
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.19-29
    • /
    • 2022
  • Recently, with the development of IoT technology, the number of farms using smart farms is increasing. Smart farms monitor the environment and optimise internal environment automatically to improve crop yield and quality. For optimized crop cultivation, researches on predict crop productivity are actively studied, by using collected agricultural digital data. However, most of the existing studies are based on statistical models based on existing statistical data, and thus there is a problem with low prediction accuracy. In this paper, we use various predition models for predicting the production and sales profits, and compare the performance results through models by using the agricultural digital data collected in the facility horticultural smart farm. The models that compared the performance are multiple linear regression, support vector machine, artificial neural network, recurrent neural network, LSTM, and ConvLSTM. As a result of performance comparison, ConvLSTM showed the best performance in R2 value and RMSE value.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Effective Drought Prediction Based on Machine Learning (머신러닝 기반 효과적인 가뭄예측)

  • Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

Real-time fluvial sediment load monitoring method using H-ADCP and support vector regression (H-ADCP와 서포트벡터회귀를 이용한 실시간 하천 유사량 모니터링 방법)

  • Noh, Hyoseob;Son, GeunSoo;Kim, Dongsu;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.25-25
    • /
    • 2022
  • 하천의 개발 및 보전 계획을 수립하는 데에 있어 자연하천의 부유사량 및 총유사량을 계측하는 것은 매우 중요하다. 우리나라에서는 매년 국내 자연하천을 대상으로 부유사량을 실측하고 실측 부유사량을 바탕으로 수정 아인슈타인 방법을 적용해 총유사량을 산정하고 있으나 이 또한 홍수기에 국한되어 있다. 가장 일반적인 유사량 계측 방법인 시료 채집에 의한 방법은 많은 노력과 비용을 수반하기 때문에 유사량 관측소와 관측 빈도를 늘릴 수 없는 실정이다. 최근에는 ADCP 음파 신호의 후방산란도가 부유사 농도에 따라 증가한다는 성질을 이용해 부유사 농도 계측에 ADCP를 이용하고자 하는 노력이 계속되고 있다. 이러한 특성을 이용해 본 연구에서는 전라남도 나주시에 위치한 남평교 자동유량관측소에 설치된 횡방향 ADCP (H-ADCP)를 대상으로 서포트 벡터 회귀(SVR)를 적용한 실시간 유사량 모니터링 모형을 제안하였다. 여기서 제시하는 유사량산정 모형은 크게 유량과 초음파 산란도를 입력 변수로 해 부유사 농도를 산정하는 서포트 벡터 회귀 모형과 첫 번째 모형으로부터 산정된 부유사 농도와 흐름 정보를 이용해 총유사량을 산정하는 모형으로 구성되어 있다. 개발된 SVR 부유사량 및 총유사량 산정 모형의 정확도가 결정계수(R2) 기준으로 각각 0.82, 0.90 으로 나타났다. 주목할 점은, 본 연구에서 제시하는 SVR 모형을 이용해 멱함수 기반 유사량 관계식으로는 예측할 수 없는 유사량의 이력현상을 재현해낼 수 있다는 것이다. 본 연구에서 제시하는 H-ADCP 기반 총유사량 모니터링 방법은 기존 자동 유량 관측소 시설을 그대로 이용할 수 있다는 장점이 있다. 따라서 실무 적용 시 낮은 추가비용으로 양질의 유사량 모니터링이 가능할 것으로 기대된다.

  • PDF