• Title/Summary/Keyword: Support vector machines.

Search Result 435, Processing Time 0.026 seconds

Knowledge-Based Approach Using Support Vector Machine for Transmission Line Distance Relay Co-ordination

  • Ravikumar, B.;Thukaram, D.;Khincha, H.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.363-372
    • /
    • 2008
  • In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.

Retrieval of oceanic primary production using support vector machines

  • Tang, Shilin;Chen, Chuqun;Zhan, Haigang
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.114-117
    • /
    • 2006
  • One of the most important tasks of ocean color observations is to determine the distribution of phytoplankton primary production. A variety of bio-optical algorithms have been developed estimate primary production from these parameters. In this communication, we investigated the possibility of using a novel universal approximator-support vector machines (SVMs)-as the nonlinear transfer function between oceanic primary production and the information that can be directly retrieved from satellite data. The VGPM (Vertically Generalized Production Model) dataset was used to evaluate the proposed approach. The PPARR2 (Primary Production Algorithm Round Robin 2) dataset was used to further compare the precision between the VGPM model and the SVM model. Using this SVM model to calculate the global ocean primary production, the result is 45.5 PgC $yr^{-1}$, which is a little higher than the VGPM result.

  • PDF

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

Adaptive ridge procedure for L0-penalized weighted support vector machines

  • Kim, Kyoung Hee;Shin, Seung Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1271-1278
    • /
    • 2017
  • Although the $L_0$-penalty is the most natural choice to identify the sparsity structure of the model, it has not been widely used due to the computational bottleneck. Recently, the adaptive ridge procedure is developed to efficiently approximate a $L_q$-penalized problem to an iterative $L_2$-penalized one. In this article, we proposed to apply the adaptive ridge procedure to solve the $L_0$-penalized weighted support vector machine (WSVM) to facilitate the corresponding optimization. Our numerical investigation shows the advantageous performance of the $L_0$-penalized WSVM compared to the conventional WSVM with $L_2$ penalty for both simulated and real data sets.

Combining genetic algorithms and support vector machines for bankruptcy prediction

  • Min, Sung-Hwan;Lee, Ju-Min;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.179-188
    • /
    • 2004
  • Bankruptcy prediction is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. Recently, support vector machine (SVM) has been applied to the problem of bankruptcy prediction. The SVM-based method has been compared with other methods such as neural network, logistic regression and has shown good results. Genetic algorithm (GA) has been increasingly applied in conjunction with other AI techniques such as neural network, CBR. However, few studies have dealt with integration of GA and SVM, though there is a great potential for useful applications in this area. This study proposes the methods for improving SVM performance in two aspects: feature subset selection and parameter optimization. GA is used to optimize both feature subset and parameters of SVM simultaneously for bankruptcy prediction.

  • PDF

A Splog Detection System Using Support Vector Machines and $x^2$ Statistics (지지벡터기계와 카이제곱 통계량을 이용한 스팸 블로그(Splog) 판별 시스템)

  • Lee, Song-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.905-908
    • /
    • 2010
  • Our purpose is to develope the system which detects splogs automatically among blogs on Web environment. After removing HTML of blogs, they are tagged by part of speech(POS) tagger. Words and their POS tags information is used as a feature type. Among features, we select useful features with $x^2$ statistics and train the SVM with the selected features. Our system acquired 90.5% of F1 measure with SPLOG data set.

  • PDF

Density based Fuzzy Support Vector Machines for multicategory Pattern Classification (밀도에 기반한 펴지 서포트 벡터 머신을 이용한 멀티 카데고리에서의 패턴 분류)

  • Park Jong-Hoon;Choi Byung-In;Rhee Frank Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.251-254
    • /
    • 2006
  • 본 논문은 multiclass 문제에서 기존에 나와 있는 fuzzy support vector mahchines 이 decision boundary 를 설정하는데 있어 모든 훈련 데이터에 대해서 바람직한 decision boundary 를 만들지 못하므로 그러한 경우를 예로 제시한다. 그리고 그에 대한 개선점으로 밀도를 이용해 decision boundary 를 조정하여 기존 FSVM 의 decision boundary 보다 더 타당한 decision boundary 를 설정하는 것을 보인다.

  • PDF

An Automatic Spam e-mail Filter System Using χ2 Statistics and Support Vector Machines (카이 제곱 통계량과 지지벡터기계를 이용한 자동 스팸 메일 분류기)

  • Lee, Songwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.592-595
    • /
    • 2009
  • We propose an automatic spam mail classifier for e-mail data using Support Vector Machines (SVM). We use a lexical form of a word and its part of speech (POS) tags as features. We select useful features with ${\chi}^2$ statistics and represent each feature using text frequency (TF) and inversed document frequency (IDF) values for each feature. After training SVM with the features, SVM classifies each email as spam mail or not. In experiment, we acquired 82.7% of accuracy with e-mail data collected from a web mail system.

  • PDF

Word Sense Classification Using Support Vector Machines (지지벡터기계를 이용한 단어 의미 분류)

  • Park, Jun Hyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.563-568
    • /
    • 2016
  • The word sense disambiguation problem is to find the correct sense of an ambiguous word having multiple senses in a dictionary in a sentence. We regard this problem as a multi-class classification problem and classify the ambiguous word by using Support Vector Machines. Context words of the ambiguous word, which are extracted from Sejong sense tagged corpus, are represented to two kinds of vector space. One vector space is composed of context words vectors having binary weights. The other vector space has vectors where the context words are mapped by word embedding model. After experiments, we acquired accuracy of 87.0% with context word vectors and 86.0% with word embedding model.

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.