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ABSTRACT: One of the most important tasks of ocean color observations is to determine the distribution of

phytoplankton primary production. A variety of bio-optical algorithms have been developed estimate primary

production from these parameters. In this communication, we investigated the possibility of using a novel universal

approximator-support vector machines (SVMs)-as the nonlinear transfer function between oceanic primary

production and the information that can be directly retrieved from satellite data. The VGPM (Vertically Generalized

Production Model) dataset was used to evaluate the proposed approach. The PPARR2 (Primary Production Algorithm
Round Robin 2) dataset was used to further compare the precision between the VGPM model and the SVM model.
Using this SVM model to calculate the global ocean primary production, the result is 45.5 PgC yr!, which is a little

higher than the VGPM result.
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INTRODUCTION

Retrieval of ocean primary production by remote
sensing has become a topical research issue in the
oceanographic community. It is now possible to use
satellite remote sensing to estimate primary production
on global scales (Platt & Sathyendranath, 1988; Morel,
1991; Behrenfeld & Falkowski, 1997; Behrenfeld et al.
2002; Smyth, et al, 2005; Behrenfeld, et al., 2005).
Among these models, the VGPM model developed by
Behrenfeld and Falkowski (1997) being used the most
popular, because all of the parameters in VGPM can be
easily obtained from satellite data.

In the VGPM and most other models, primary
production is regarded as a function of surface
chlorophyll concentration, photosynthetically available
radiation (PAR), ecuphotic depth, and maximum C
fixation rate etc. Statistical models have also been
developed in order to obtain phytoplankton primary
productivity estimates from other variables that are easier
to measure. However, the statistical regressions have
limitations because of the nonlinear relationship between
primary production and other variables. The uncertainty
of the statistical models necessitates careful calibration.

Support vector machines (SVMs) may be able to
solve these problems. SVMs do not refer to hardware;
rather it is a software-based scheme. SVMs have been
developed by Vapnik (Cortes and Vapnik, 1995; Vapnik,'
1999; Vapnik, 2000) within the area of statistical
leamning theory and structural risk minimization (SRM).

Today SVMs show better results than (or comparable
outcomes to) neural networks (NNs) and other statistical
models on important benchmark problems. SVMs are
advantageous, because they were developed especially
for sample limited datasets. The goal of the training is to
obtain the optimal function other than the infinite sample
result. So it can avoid the phenomenon that the learning
process converges but the forecast performance is poor.
SVM training leads to a convex quadratic programming
(QP), obtaining the optimal result, and avoiding the
problem of local extremum in traditional NNs. The SVM
maps the original problem to a high feature space using
nonlinear transformation. In addition, SVMs construct
linear discriminants in high feature space instead of
nonlinear discriminants in the original feature space,
allowing for high generalization of the model. It solved
the dimension disaster subtly, and let the complexity of
the algorithm is independent of the dimension of samples.
In this article, we have developed a primary production
model using SVMs., and we used it to estimate global
ocean primary production.

The initial work on SVM focused on optical
character recognition (OCR). Within a short period of
time, SV classifiers became competitive with the best
avajlable systems for both OCR and object recognition
tasks., A comprehensive tutorial on SV classifiers has
been published by Burges (1998). But also in regression
and time series prediction applications, excellent

performances were soon obtained (Stitson et al., 1999;
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Mattera and Haykin). In this section, we will briefly
introduce the basic ideas of SVMs for regression. For
details see some books (Vapnik, 2000; Cristianini &
Shawe-Taylor, 2000). The training software used in our
experiments is LIBSVM (Chang and Lin, 2001; Fan et
al., 2005).
RETRIEVAL EXPERIMENT
Data description and preprocessing

To carry out the retrieval of primary production
using SVM, we first obtained an in situ dataset that
archived by the VGPM project; these data were
measured throughout the world’s oceans from 80°N to
80°S,

oligoptrophic regimes from all major ocean basins. The

including both eutrophic regimes and
dataset includes almost 3000 profiles of primary
production measured by *C in situ and simulated in situ
incubations. It also includes a series of other parameters
related to primary production: measurement time,
locations, C fixation rate, chlorophyll concentration
(Chl), sea-surface temperature (SST), daily surface
irradiance (Eo) and euphotic depth (Zeu), etc.

Behrenfeld and Falkowski set up a VGPM model

based on this dataset in 1997:

PR, =066125%F X[ E, /(E, +4.)xZ,,xCh], xD,,

opt
@)
Behrenfeld and Falkowski (1997) examined the
relationship ~ between  Chl,,  and  Chl,,

(chlorophyll concentration at the surface), it shows a
high correlation ( r? =0.94) and Behrenfeld and

SVM training set

Falkowski (1997) concluded that Chl,, can be
replaced by Chl,,,, in the VGPM. In Behrenfeld and

Falkowski (1997), a formula for Pof,, as a function of

SST was proposed.:

All inputs and the output were log,-transfomed.
The advantage of these transformations is that the
distribution of transformed data will become more
symmetrical and closer to normal. The input variables
and output variable are the same as in VGPM. The
dataset contains more than 3000 groups, but not all of
them contain all the variables we would like to use. We
choose 2412 groups that contain all the variables and in
which primary production is not equal to zero. Half of
them (1206) were picked as the training set and the other
half as the validation set. We adjust the parameters to
search the best result. Finally we set C=16, &=0.08,
o =0.5, because these values perform the best. After we
the

determines the number and the locations of the RBF

fixed these parameters, SVM automatically
centers during its training.
Results

The performance of the models was evaluated using
root-mean-square error (RMSE) and coefficient of
determination (_Rz) (Fig.1). The correlation between the
retrieved and the in situ primary production for the
training set is 0.9153 and the RMSE is 0.1491. The

RMSE for the validation set is 0.1703, and its R? is
0.8878.
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Fig.1. Comparison of the SVM-derived versus measured daily primary production on training and validation

dataset. All data were log;o-transformed.
The VGPM algorithm was applied to the same

training and validation sets, and the comparison with

observed values is shown on Figure 2. The correlation

between the retrieved and the in situ primary production
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for the training set was 0.8605 and the RMSE for the
training set was 0.2125. The RMSE for the validation

s VGPM training set

set was 0.2178, and its R® was 0.8498,

VGPM validation set
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Fig.2. Comparison of measured primary production and VGPM modeled primary production. All data are

logjo-transformed.
Comparison of SVM model and VGPM model

To further compare the SVM model and the
VGPM model, we chose another dataset from a project
of PPARR2 to review our model. The PPARR2 data
set has a data set of complete independence and large
geographical distribution. It contains 89 groups of data.
Compbell et al. (2002) used it to check up several
primary production models. The SVM performed
better result than the VGPM (Fig.3). The coefficient of
determination is higher, 0.51 versus 0.47, and the
RMSE decreases from 0.31 to 0.26. The result for this

dataset has a lower degree of accuracy compared with
the result in 3.2, because Pof,t was modeled in that

case through the 7® order polynomial function of SST
used in the VGPM.
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Fig.3. Comparison of SVM and VGPM model using
PPARR2 dataset

GLOBAL PRIMARY PRODUCTION ESTIMATE
USING SVM

We used our SVM model to estimate global primary
production. The sea surface chlorophyll concentration,
temperature and PAR data were downloaded from
NASA’s monthly standard products. Euphotic depths
were calculated according to Morel and Berthon (1989).

b . .
Pop, was modeled with a 7-order polynomial of SST

developed by Beherenfeld and Falkowski (1997). D,

was calculated using the program developed by the
VGPM research team (http://marine.rutgers.edu/opp/).
Thus the input data are the same as for the VGPM, i.e.,

b
Popt , PAR, Z, ,

Chl,cand D, . We used global

monthly data covering 2003 to estimate primary
production for every month and then integrated it to a
year. For comparison, we also calculated the primary
production using VGPM. The global primary production

calculated using SVM is 4.55x10" ¢C yr', and the

result of the VGPM is 4.3x10™ gCyr'.

CONCLUSION

In this paper, we introduced the SVMs for the first
time in estimating ocean primary production. A great
number of experiments and exhaustive comparison have
been conducted. Analysis of VGPM and PPARR2
datasets shows that the performance of SVMs is more

-116 -



accurate than the VGPM model. The good results
obtained by SVMs suggest that they constitute effective
tools that could constitute effective tools that could lead
to improvements in other biophysical parameter
problems. It indicates that the SVMs are a feasible and
universal method for modeling ocean primary production.
Global ocean primary production was estimated using

SVM on the basis of satellite remote sensing data.
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