• 제목/요약/키워드: Support vector machines(SVM)

검색결과 286건 처리시간 0.027초

SVM의 미세조정을 통한 음성/음악 분류 성능향상 (Fine-tuning SVM for Enhancing Speech/Music Classification)

  • 임정수;송지현;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.141-148
    • /
    • 2011
  • Support vector machine (SVM)은 패턴인식 분야에 많이 사용되어지고 있다. 한 예로서 3GPP2 selectable mode vocoder (SMV)와 같은 규격화된 코덱에 쓰여 코덱의 음성/음악 분류 성능을 향상시킬 수 있다. 본 논문에서는 SVM을 개선시켜 음성/음악의 분류성능을 향상시키는 새로운 방법을 제안한다. SVM을 학습시킬 때 적용되는 기존의 기법들과는 달리 제안되는 기법은 SVM이 패턴분류를 행할 때 사용된다. 그렇기 때문에 기존의 기법들과 독립적으로 개발되고 사용될 수 있고, 따라서 패턴분류의 성능을 한층 더 향상시킬 수 있다. 이를 위해 먼저 radial basis function의 커널 width 파라미터가 SVM의 패턴분류에 미치는 영향을 분석해 보았다. 분석한 결과, 커널 width 파라미터를 가지고 SVM의 패턴분류 성향을 미세 조정할 수 있다는 것을 알았다. 또한 음성신호의 각 프레임 간의 상관관계 (correlation)을 확인하고 이를 커널 width 파라미터조절의 길잡이로 삼았다. 실험을 통해, 제안된 기법이 SVM의 성능을 향상시킬 수 있음을 증명하였다.

Support Vector Machines를 이용한 Convex 클러스터 결합 알고리즘 (A Convex Cluster Merging Algorithm using Support Vector Machines)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.267-270
    • /
    • 2002
  • 본 논문에서는 Support Vector Machines (SVM) 을 이용하여, 빠르고 정확한 두 convex한 클러스터 간의 거리 측정 방법을 제시한다 제시된 방법에서는, SVM에 의해서 생성되는 최적 다차원 평면이 두 클러스터간의 최소 거리를 계산하는데 사용된다. 또한, 본 논문에서는 이러한 두 클러스터 간의 최적의 거리를 사용하여, Fuzzy Convex Clustering (FCC) 방법 (1) 에 의해서 생성되는 Convex 클러스터들을 묶어주는 효과적인 클러스터 결합 알고리즘을 제시하였다. 그러므로, 데이터의 부적절한 표현을 유발하지 않고도 클러스터들의 개수를 좀 더 줄일 수 있었다. 제시한 방법의 타당성을 위하여 여러 실험 결과를 제시하였다

퍼지서포트벡터기계의 시계열자료 패턴분류를 위한 퍼지소속 함수에 관한 연구 (On the Fuzzy Membership Function of Fuzzy Support Vector Machines for Pattern Classification of Time Series Data)

  • 이수용
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.799-803
    • /
    • 2007
  • 본 논문에서는 FSVM(Putty Support Vector Machine)의 퍼지소속함수를 새롭게 제안한다. SVM의 완화변수(slack-variable)에 퍼지소속함수를 결합하는 FSVM은 주어진 데이터베이스의 특성이 반영되어 안정적으로 분류성능을 향상시킬 수 있는 퍼지소속 함수를 필요로 한다. 시계열 자료의 패턴분류 성능을 비교하기 위하여 SVM, FSVM(1), 그리고 제안하는 FSVM(2) 등의 분류모델들을 비교 실험하였다. 사용한 데이터베이스는 한국금융시장의 시계열 경제지표 지수들이다.

Support Vector Machines 기반의 클러스터 결합 기법 (Support Vector Machine based Cluster Merging)

  • 최병인;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.369-374
    • /
    • 2004
  • Convex한 클러스터간의 최적의 거리와 Fuzzy Convex Clustering(FCC) 방법에 의한 효과적인 클러스터 결합 알고리즘을 제시하였다. 또한 두 convex한 클러스터간의 거리 측정 방법의 문제점인 정확성과 수행속도 개선하기 위하여 Support Vector Machines(SVM) 을 이용한 빠르고 정확한 거리 측정 방법을 제시하였다. 따라서 데이터의 부적절한 표현 없이 클러스터들의 개수를 크게 더 줄일 수 있었다. 본 논문에서는 제시한 알고리즘의 타당성을 위하여 여러 데이터에 대한 실험결과를 보여주므로서 제시한 알고리즘을 실제 영상 분할에 적용하여 다른 클러스터링 방법의 결과와 비교분석한다.

Support Vector Machine을 이용한 지능형 신용평가시스템 개발 (Development of Intelligent Credit Rating System using Support Vector Machines)

  • 김경재
    • 한국정보통신학회논문지
    • /
    • 제9권7호
    • /
    • pp.1569-1574
    • /
    • 2005
  • In this paper, I propose an intelligent credit rating system using a bankruptcy prediction model based on support vector machines (SVMs). SVMs are promising methods because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. This study examines the feasibility of applying SVM in Predicting corporate bankruptcies by comparing it with other data mining techniques. In addition. this study presents architecture and prototype of intelligeht credit rating systems based on SVM models.

A note on SVM estimators in RKHS for the deconvolution problem

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • 제23권1호
    • /
    • pp.71-83
    • /
    • 2016
  • In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM) and Tikhonov's regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS). A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of the deconvolution density estimators based on the support vector method is compared with the classical kernel deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the same performance as the classical kernel deconvolution density estimator.

SVM을 통한 미확인 침입탐지 시스템 개발 (A Development of Unknown Intrusion Detection System with SVM)

  • 김석태;한인규;이창용;고정호;이도원;오정민;방철수;이극
    • 융합보안논문지
    • /
    • 제7권4호
    • /
    • pp.23-28
    • /
    • 2007
  • 본 연구는 수집된 training 패킷을 패킷이미지 생성모듈을 통해 적절히 가공하여 SVM에 학습을 시키고 학습된 SVM에 testing 패킷이미지를 테스트 시킨 후 분류해내는 것을 제안한다. 서포트 벡터 머신[Support Vector Machines]을 이용한 미확인 침입탐지 시스템은 보안의 안정성 및 효율성면에서 기존의 시스템들보다 훨씬 우수하다.

  • PDF

Support Vector Machines을 이용한 다중 클래스 문제 해결 (Solving Multi-class Problem using Support Vector Machines)

  • 고재필
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1260-1270
    • /
    • 2005
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로 Support Vector Machines (SVM)이 주목 받고 있다. SVM은 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나. SVM은 이진 분류기이므로 일반적인 다중 클래스 문제에 곧바로 적용할 수 없다. SVM을 다중 클래스 문제의 하나인 얼굴인식에 도입하기 위한 방법으로는, One-Per-Class와 All-Pairs가 대표적이다. 상기 두 방법은 다중 클래스 문제를 여러 개의 이진 클래스 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 방법에 속한다. 본 논문에서는 이진 분류기인 SVM의 다중 클래스 분류기 확장 방안으로 출력코딩 방법론을 설명한다. 또한 출력코딩 방법론의 대표적인 이론적 기반인 ECOC(Ewor-Correcting Output Codes)를 근간으로 하는 새로운 출력코딩 방법들을 제안하고, 얼굴인식 실험을 통해 SVM을 기반 분류기로 사용할 경우의, 출력코딩 방법의 특성을 비교$\cdot$분석한다.

Weighted Support Vector Machines for Heteroscedastic Regression

  • Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.467-474
    • /
    • 2006
  • In this paper we present a weighted support vector machine(SVM) and a weighted least squares support vector machine(LS-SVM) for the prediction in the heteroscedastic regression model. By adding weights to standard SVM and LS-SVM the better fitting ability can be achieved when errors are heteroscedastic. In the numerical studies, we illustrate the prediction performance of the proposed procedure by comparing with the procedure which combines standard SVM and LS-SVM and wild bootstrap for the prediction.

  • PDF

Study of Personal Credit Risk Assessment Based on SVM

  • LI, Xin;XIA, Han
    • 산경연구논집
    • /
    • 제13권10호
    • /
    • pp.1-8
    • /
    • 2022
  • Purpose: Support vector machines (SVMs) ensemble has been proposed to improve classification performance of Credit risk recently. However, currently used fusion strategies do not evaluate the importance degree of the output of individual component SVM classifier when combining the component predictions to the final decision. To deal with this problem, this paper designs a support vector machines (SVMs) ensemble method based on fuzzy integral, which aggregates the outputs of separate component SVMs with importance of each component SVM. Research design, data, and methodology: This paper designs a personal credit risk evaluation index system including 16 indicators and discusses a support vector machines (SVMs) ensemble method based on fuzzy integral for designing a credit risk assessment system to discriminate good creditors from bad ones. This paper randomly selects 1500 sample data of personal loan customers of a commercial bank in China 2015-2020 for simulation experiments. Results: By comparing the experimental result SVMs ensemble with the single SVM, the neural network ensemble, the proposed method outperforms the single SVM, and neural network ensemble in terms of classification accuracy. Conclusions: The results show that the method proposed in this paper has higher classification accuracy than other classification methods, which confirms the feasibility and effectiveness of this method.