• Title/Summary/Keyword: Support vector machine classifier

Search Result 324, Processing Time 0.021 seconds

Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel (분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류)

  • Choi, Jae-Wan;Byun, Young-Gi;Kim, Yong-Il;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.71-77
    • /
    • 2006
  • Support Vector Machine (SVM) which has roots in a statistical learning theory is a training algorithm based on structural risk minimization. Generally, SVM algorithm uses the kernel for determining a linearly non-separable boundary and classifying the data. But, classical kernels can not apply to effectively the hyperspectral image classification because it measures similarity using vector's dot-product or euclidian distance. So, This paper proposes the spectral similarity kernel to solve this problem. The spectral similariy kernel that calculate both vector's euclidian and angle distance is a local kernel, it can effectively consider a reflectance property of hyperspectral image. For validating our algorithm, SVM which used polynomial kernel, RBF kernel and proposed kernel was applied to land cover classification in Hyperion image. It appears that SVM classifier using spectral similarity kernel has the most outstanding result in qualitative and spatial estimation.

  • PDF

Research on improving correctness of cardiac disorder data classifier by applying Best-First decision tree method (Best-First decision tree 기법을 적용한 심전도 데이터 분류기의 정확도 향상에 관한 연구)

  • Lee, Hyun-Ju;Shin, Dong-Kyoo;Park, Hee-Won;Kim, Soo-Han;Shin, Dong-Il
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.63-71
    • /
    • 2011
  • Cardiac disorder data are generally tested using the classifier and QRS-Complex and R-R interval which is used in this experiment are often extracted by ECG(Electrocardiogram) signals. The experimentation of ECG data with classifier is generally performed with SVM(Support Vector Machine) and MLP(Multilayer Perceptron) classifier, but this study experimented with Best-First Decision Tree(B-F Tree) derived from the Dicision Tree among Random Forest classifier algorithms to improve accuracy. To compare and analyze accuracy, experimentation of SVM, MLP, RBF(Radial Basic Function) Network and Decision Tree classifiers are performed and also compared the result of announced papers carried out under same interval and data. Comparing the accuracy of Random Forest classifier with above four ones, Random Forest is the best in accuracy. As though R-R interval was extracted using Band-pass filter in pre-processing of this experiment, in future, more filter study is needed to extract accurate interval.

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

A Novel Feature Selection Approach to Classify Breast Cancer Drug using Optimized Grey Wolf Algorithm

  • Shobana, G.;Priya, N.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.258-270
    • /
    • 2022
  • Cancer has become a common disease for the past two decades throughout the globe and there is significant increase of cancer among women. Breast cancer and ovarian cancers are more prevalent among women. Majority of the patients approach the physicians only during their final stage of the disease. Early diagnosis of cancer remains a great challenge for the researchers. Although several drugs are being synthesized very often, their multi-benefits are less investigated. With millions of drugs synthesized and their data are accessible through open repositories. Drug repurposing can be done using machine learning techniques. We propose a feature selection technique in this paper, which is novel that generates multiple populations for the grey wolf algorithm and classifies breast cancer drugs efficiently. Leukemia drug dataset is also investigated and Multilayer perceptron achieved 96% prediction accuracy. Three supervised machine learning algorithms namely Random Forest classifier, Multilayer Perceptron and Support Vector Machine models were applied and Multilayer perceptron had higher accuracy rate of 97.7% for breast cancer drug classification.

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

Context-Aware Fusion with Support Vector Machine (Support Vector Machine을 이용한 문맥 인지형 융합)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.19-26
    • /
    • 2014
  • An ensemble classifier system is a widely-used multi-classifier system, which combines the results from each classifier and, as a result, achieves better classification result than any single classifier used. Several methods have been used to build an ensemble classifier including boosting, which is a cascade method where misclassified examples in previous stage are used to boost the performance in current stage. Boosting is, however, a serial method which does not form a complete feedback loop. In this paper, proposed is context sensitive SVM ensemble (CASE) which adopts SVM, one of the best classifiers in term of classification rate, as a basic classifier and clustering method to divide feature space into contexts. As CASE divides feature space and trains SVMs simultaneously, the result from one component can be applied to the other and CASE achieves better result than boosting. Experimental results prove the usefulness of the proposed method.

A Detailed Analysis of Classifier Ensembles for Intrusion Detection in Wireless Network

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1203-1212
    • /
    • 2017
  • Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.

Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis (비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가)

  • Lee, Jee-Eun;Yoo, Sun-Kook;Lee, Byung-Chae
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2013
  • Attention is one of important cognitive functions in human affecting on the selectional concentration of relevant events and ignorance of irrelevant events. The discrimination of attentional and inattentional status is the first step to manage human's attentional capability using computer assisted device. In this paper, we newly combine the non-linear recurrence pattern analysis and spectrum analysis to effectively extract features(total number of 13) from the electroencephalographic signal used in the input to classifiers. The performance of diverse types of attention-inattention classifiers, including supporting vector machine, back-propagation algorithm, linear discrimination, gradient decent, and logistic regression classifiers were evaluated. Among them, the support vector machine classifier shows the best performance with the classification accuracy of 81 %. The use of spectral band feature set alone(accuracy of 76 %) shows better performance than that of non-linear recurrence pattern feature set alone(accuracy of 67 %). The support vector machine classifier with hybrid combination of non-linear and spectral analysis can be used in later designing attention-related devices.

  • PDF