• 제목/요약/키워드: Support vector machine(regression)

검색결과 381건 처리시간 0.022초

Support Vector Machine을 이용한 고객이탈 예측모형에 관한 연구 (A Study on Customer Segmentation Prediction Model using Support Vector Machine)

  • 서광규
    • 대한안전경영과학회지
    • /
    • 제7권1호
    • /
    • pp.199-210
    • /
    • 2005
  • Customer segmentation prediction has attracted a lot of research interests in previous literature, and recent studies have shown that artificial neural networks (ANN) method achieved better performance than traditional statistical ones. However, ANN approaches have suffered from difficulties with generalization, producing models that can overfit the data. This paper employs a relatively new machine learning technique, support vector machines (SVM), to the customer segmentation prediction problem in an attempt to provide a model with better explanatory power. To evaluate the prediction accuracy of SVM, we compare its performance with logistic regression analysis and ANN. The experiment results with real data of insurance company show that SVM superiors to them.

서포트벡터머신을 이용한 교육시설 초기 공사비 예측에 관한 연구 (A Study on Predicting Construction Cost of Educational Building Project at early stage Using Support Vector Machine Technique)

  • 신재민;김광희
    • 교육녹색환경연구
    • /
    • 제11권3호
    • /
    • pp.46-54
    • /
    • 2012
  • The accuracy of cost estimation at an early stage in school building project is one of the critical factors for successful completion. So various of techniques are developed to predict the construction cost accurately and expeditely. Among the techniques, Support Vector Machine(SVM) has an excellent ability for generalization performance. Therefore, the purpose of this study is to construct the prediction model for construction cost of educational building project using support vector machine technique. And to verify the accuracy of prediction model for construction cost. The performance data used in this study are 217 school building project cost which have been completed from 2004 to 2007 in Gyeonggi-Do, Korea. The result shows that average error rate was 7.48% for SVM prediction model. So using SVM model on predicting construction cost of educational building project will be a considerably effective way at the early project stage.

Software Reliability Assessment with Fuzzy Least Squares Support Vector Machine Regression

  • Hwang, Chang-Ha;Hong, Dug-Hun;Kim, Jang-Han
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.486-490
    • /
    • 2003
  • Software qualify models can predict the risk of faults in the software early enough for cost-effective prevention of problems. This paper introduces a least squares support vector machine (LS-SVM) as a fuzzy regression method for predicting fault ranges in the software under development. This LS-SVM deals with the fuzzy data with crisp inputs and fuzzy output. Predicting the exact number of bugs in software is often not necessary. This LS-SVM can predict the interval that the number of faults of the program at each session falls into with a certain possibility. A case study on software reliability problem is used to illustrate the usefulness of this LS -SVM.

Support Vector Machine을 이용한 플라즈마 공정 모델링 (Modeling of Plasma Process Using Support Vector Machine)

  • 김민재;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.211-213
    • /
    • 2006
  • In this study, plasma etching process was modeled by using support vector machine (SVM). The data used in modeling were collected from the etching of silica thin films in inductively coupled plasma. For training and testing neural network, 9 and 6 experiments were used respectively. The performance of SVM was evaluated as a function of kernel type and function type. For the kernel type, Epsilon-SVR and Nu-SVR were included. For the function type, linear, polynomial, and radial basis function (RBF) were included. The performance of SVM was optimized first in terms of kernel type, then as a function of function type. Five film characteristics were modeled by using SVM and the optimized models were compared to statistical regression models. The comparison revealed that statistical regression models yielded better predictions than SVM.

  • PDF

서포트벡터기계를 이용한 VaR 모형의 결합 (Combination of Value-at-Risk Models with Support Vector Machine)

  • 김용태;심주용;이장택;황창하
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.791-801
    • /
    • 2009
  • VaR(Value-at-Risk)는 시장위험을 측정하기 위한 중요한 도구로 사용되고 있다. 그러나 적절한 VaR 모형의 선택에는 논란의 여지가 많다. 본 논문에서는 특정 모형을 선택하여 VaR 예측값을 구하는 대신 대표적으로 많이 사용되는 두개의 VaR 모형인 역사적 모의실험과 GARCH 모형의 예측값들을 서포트벡터기계 분위수 회귀모형을 이용하여 결합하는 방법을 제안한다.

Kernel-Trick Regression and Classification

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제22권2호
    • /
    • pp.201-207
    • /
    • 2015
  • Support vector machine (SVM) is a well known kernel-trick supervised learning tool. This study proposes a working scheme for kernel-trick regression and classification (KtRC) as a SVM alternative. KtRC fits the model on a number of random subsamples and selects the best model. Empirical examples and a simulation study indicate that KtRC's performance is comparable to SVM.

서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측 (Real-Time Prediction for Product Surface Roughness by Support Vector Regression)

  • 최수진;이동주
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

Forecasting Exchange Rates using Support Vector Machine Regression

  • Chen, Shi-Yi;Jeong, Ki-Ho
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 춘계학술대회
    • /
    • pp.155-163
    • /
    • 2005
  • This paper applies Support Vector Regression (SVR) to estimate and forecast nonlinear autoregressive integrated (ARI) model of the daily exchange rates of four currencies (Swiss Francs, Indian Rupees, South Korean Won and Philippines Pesos) against U.S. dollar. The forecasting abilities of SVR are compared with linear ARI model which is estimated by OLS. Sensitivity of SVR results are also examined to kernel type and other free parameters. Empirical findings are in favor of SVR. SVR method forecasts exchange rate level better than linear ARI model and also has superior ability in forecasting the exchange rates direction in short test phase but has similar performance with OLS when forecasting the turning points in long test phase.

  • PDF

Support Vector Regression을 이용한 희소 데이터의 전처리 (A Sparse Data Preprocessing Using Support Vector Regression)

  • 전성해;박정은;오경환
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.789-792
    • /
    • 2004
  • 웹 마이닝, 바이오정보학, 통계적 자료 분석 등 여러 분야에서 매우 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 가장 기본적인 평균과 최빈수뿐만 아니라 조건부 평균, 나무 모형, 그리고 마코프체인 몬테칼로 기법과 같은 결측치 대체 기법들을 적용하여 추정된 값에 의해 대체된다. 그런데 주어진 데이터의 결측치 비율이 크게 되면 기존의 결측치 대체 방법들의 예측의 정확도는 낮아지는 특성을 보인다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 결측치 대체 방법들의 수는 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 통계적 학습 이론 중에서 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형하여 적용하였다. 제안 방법을 이용하여 결측치 비율이 큰 희소 데이터의 전처리도 가능할 수 있도록 하였다 UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.

Support Vector Regression을 이용한 희소 데이터의 전처리 (A Sparse Data Preprocessing Using Support Vector Regression)

  • 전성해;박정은;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.499-501
    • /
    • 2004
  • 웹 로그, 바이오정보학 둥 여러 분야에서 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 조건부 평균이나 나무 모형과 같은 기본적인 Imputation 방법을 이용하여 추정된 값에 의해 대체되기도 하고 일부는 제거되기도 한다. 특히, 결측치 비율이 매우 크게 되면 기존의 결측치 대체 방법의 정확도는 떨어진다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 Imputation 방법들의 수는 극히 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형한 Support Vector Regression을 제안하여 이러한 문제점들을 해결하였다. 제안 방법을 통하여 결측치의 비율이 상당히 큰 희소 데이터의 전처리도 가능하게 되었다. UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.

  • PDF