• Title/Summary/Keyword: Support structures

Search Result 1,229, Processing Time 0.028 seconds

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.

Determination of Optimal Build-up Direction for Stereolithographic Rapid Prototyping (SLA를 이용한 신속 시작작업에서 최적 성형방향의 결정)

  • Hur, Junghoon;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-173
    • /
    • 1996
  • Stereolithography is a process used to rapidly produce polymer components directly form a computer representation of the part. There are several considerations to be made for the efficient use of the process. Especially, the build-up orientation of part critically affects the part accuracy, total build time and the volume of support structures. The purpose of tis study is to determine the optimal build-up part orientation for the SLA process with improving part accuracy, and minimizing total build time and the volume of support structures. The forst factor is related to the area of surfaces whioch have staircase protrusions after solidification, the second factor is related to the total number of layers, and the third factor is related to the area of the surfaces which need to be supported with support structures. An algorithm is developed to calculate the staircase area, quantifying the process errors by the volume of materials supposed to be removed or added to the part, and the optimal layer thickness for the SLA system which can handle the variable layer thickness. So the optima l part orientation is determined based on the user's selections of primary criter- ion and the optimal thickness of layers is calculated at any part orientations.

  • PDF

Effect of non-stationary spatially varying ground motions on the seismic responses of multi-support structures

  • Xu, Zhaoheng;Huang, Tian-Li;Bi, Kaiming
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.325-341
    • /
    • 2022
  • Previous major earthquakes indicated that the earthquake induced ground motions are typical non-stationary processes, which are non-stationary in both amplification and frequency. For the convenience of aseismic design and analysis, it usually assumes that the ground motions at structural supports are stationary processes. The development of time-frequency analysis technique makes it possible to evaluate the non-stationary responses of engineering structures subjected to non-stationary inputs, which is more general and realistic than the analysis method commonly used in engineering. In this paper, the wavelet-based stochastic vibration analysis methodology is adopted to calculate the non-stationary responses of multi-support structures. For comparison, the stationary response based on the standard random vibration method is also investigated. A frame structure and a two-span bridge are analyzed. The effects of non-stationary spatial ground motion and local site conditions are considered, and the influence of structural property on the structural responses are also considered. The analytical results demonstrate that the non-stationary spatial ground motions have significant influence on the response of multi-support structures.

Experimental study on wave forces to offshore support structures

  • Jeong, Youn-Ju;Park, Min-Su;You, Young-Jun
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.193-209
    • /
    • 2016
  • In this study, wave force tests were carried out for the four types of offshore support structures with scale factor 1:25 and wave forces to the support structure shapes were investigated. As the results of this study, it was found that, as the wave period increased at the normal wave condition, wave force decreased for the most cases. Extreme wave force was affected by the impact wave force. Impact wave force of this study significantly effect on Monopile and slightly on GBS and Hybrid type. Accordingly, Hybrid type indicated even lower wave force at the extreme and irregular wave conditions than the Monopile although Hybrid type indicated higher wave force at the normal wave condition of the regular wave because of the larger wave area of wave body. In respects of the structural design, since critical loading is extreme wave force, it should be contributed to improve structural safety of offshore support structure. However, since the impact wave force has nonlinearity and complication dependent on the support structure shape, wave height, wave period, and etc., more research is needed to access the impact wave force for other support structure shapes and wave conditions.

Dynamic reliability analysis of offshore wind turbine support structure under earthquake

  • Kim, Dong-Hyawn;Lee, Gee-Nam;Lee, Yongjei;Lee, Il-Keun
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.609-623
    • /
    • 2015
  • Seismic reliability analysis of a jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function by using the dynamic response of the support structure, a number of dynamic calculations must be performed in a First-Order Reliability Method (FORM). That means analysis costs become too high. In this paper, a new reliability analysis approach using a static response is used. The dynamic effect of the response is considered by introducing a new parameter called the Peak Response Factor (PRF). The probability distribution of PRF can be estimated by using the peak value in the dynamic response. The probability distribution of the PRF was obtained by analyzing dynamic responses during a set of ground motions. A numerical example is presented to compare the proposed approach with the conventional static response-based approach.

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.

The Automatic Determination of the Optimal Build-Direction in Rapid Prototyping (고속적층조형법에서 최적 적층방향의 자동결정)

  • 채희창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.150-155
    • /
    • 1997
  • Rapid Prototyping(RP) is the technique which is used to make prototypes or functional parts directly using the 3-D solid data. Before building the prototype, several processes such as transfering 3D data from CAD system(STL) determination of build-direction, adding support structure and slicing are required. Among the above processes. determination of build-direction is the target of this study. The build direction is determined by many factors according to the objective of the user, like part accuracy, number of support structure, build time, amount of trapped volume, etc, But it is not easy to determine the build-direction because there are many factors and some factors have dependent properties with one another. So, in this study the part accuracy, the number of support structures and build time are considered as the main factor to determine the optimal build-direction. To determine the optimal build-direction for increasing part accuracy, sum of projected area which caused stairstepping effect was considered. The less the projected area is the better part accuracy is About the optimal build-direction to minimize the amount of support structure, sum of projected area of facets that require support structures was considered. About the build time, we considered the minimum height of part we intended. About the build time, we considered the minimun height of part we intended to make.

  • PDF

An Application of Topology Optimization for Strength Design of FPSO Riser Support Structure (FPSO Riser 지지 구조의 강도설계에 대한 위상최적화 응용)

  • Song, Chang-Yong;Choung, Joon-Mo;Shim, Chun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.153-160
    • /
    • 2010
  • This paper deals with the topology optimized design of the riser support structures for floating production storage and offloading units (FPSOs) under global and local loading conditions. For a preliminary study and validation of the numerical approach, a simplified plate under static loading is first evaluated with the representative topology optimization methods, the Homogenization Design Method (HDM) and Density Method (DM) or Simple Isotropic Material with Penalization (SIMP). In the context of the corresponding riser support structures, the design problem is formulated such that structure shapes based on design domain variables are determined by minimizing the compliance subject to a mass target, considering the stress criterion. An initial design model is generated based on an actual FPSO riser support configuration. The topology optimization results present improved design performances under various loading conditions, while staying within the allowable limit of the offshore area.