• Title/Summary/Keyword: Support motions

Search Result 143, Processing Time 0.022 seconds

Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys

  • Haciefendioglu, Kemal;Soyluk, Kurtulus
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.835-845
    • /
    • 2012
  • This paper focuses on the stochastic response analysis of industrial masonry chimneys to surface blast-induced random ground motions by using a three dimensional finite element model. Underground blasts induce ground shocks on nearby structures. Depending on the distance between the explosion centre and the structure, masonry structures will be subjected to ground motions due to the surface explosions. Blast-induced random ground motions can be defined in terms of the power spectral density function and applied to each support point of the 3D finite element model of the industrial masonry system. In this paper, mainly a parametric study is conducted to estimate the effect of the blast-induced ground motions on the stochastic response of a chimney type masonry structure. With this purpose, different values of charge weight and distance from the charge centre are considered for the analyses of the chimney. The results of the study underline the remarkable effect of the surface blast-induced ground motions on the stochastic behaviour of industrial masonry type chimneys.

Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions (연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능)

  • Sun, Chang-Ho;An, Sung-Min;Kim, Jung-Han;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.137-144
    • /
    • 2019
  • For the structures near the seismogenic fault, the evaluation of seismic performance against near-fault ground motions is important as well as for design ground motions. In this study, characteristics of seismic behaviors and seismic performance of the pile-bent bridge constructed on the thick soft soil site with various weak soil layers were analyzed. The input ground motions were synthesized by the directivity pulse parameters for intra-plate regions. The ground motion acceleration histories of each layer were obtained by one-dimensional site response analysis. Each soil layer was modeled by equivalent linear springs, and multi-support excitations with different input ground motions at each soil spring were applied for nonlinear seismic analyses. The analysis result by the near-fault ground motions and ground motions matched to design spectra were compared. In case of the near fault ground motion input, the bridge behaved within the elastic range but the location of the maximum moment occurred was different from the result of design ground motion input.

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.

Performance of RC moment frames with fixed and hinged supports under near-fault ground motions

  • Mohammadi, Mohammad Hossain;Massumi, Ali;Meshkat-Dini, Afshin
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.89-101
    • /
    • 2017
  • The focus of this paper is the study on the seismic performance of RC buildings with two different connections at the base level under near-fault earthquakes. It is well-known that the impulsive nature of the near-fault ground motions causes severe damages to framed buildings especially at base connections. In the scope of this study, two types of 3-dimensional RC Moment Frames with Fixed Support (MFFS) and Hinged Support (MFHS) containing 5 and 10 stories are assessed under an ensemble of 11 strong ground motions by implementing nonlinear response history analysis. The most vulnerable locations of MFFS, are the connections of corner columns to foundation especially under strong earthquakes. On the other hand, using beams at the base level as well as hinged base connections in MFHS buildings, prevents damages of corner columns and achieves more ductile behavior. Results denote that the MFHS including Base Level Beams (BLB) significantly shows better behavior compared with MFFS, particularly under pulse-type records. Additionally, the first story beams and also interior components undergo more actions. Role of the BLBs are similar to fuses decreasing the flexural moments of the corner columns. The BLBs can be constructed as replaceable members which provide the reparability of structures.

Floor Response Spectra Analysis Including Correlations of Multiple Support Motions (층간의 상관관계를 고려한 다중 층응답스펙트럼 해석)

  • 윤정방;현창헌;공재식;윤재석
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.67-72
    • /
    • 1993
  • This paper deals with the response spectra analysis method of the secondary structures including the correlation effect between the nonuniform multiple support excitations. Based on the random vibration theory, the multiple floor response spectra and the cross-correlation coefficient spectra of the floor motions are derived from the design ground response spectra. The example analysis results show that the proposed method yields more accurate results than those by the conventional multiple floor response spectra method without the correlation effects of the support motions. The present method may be easily employed in the seismic design of the secondary structures in engineering practice.

  • PDF

Analytic responses of slender beams supported by rotationally restrained hinges during support motions

  • Ryu, Jeong Yeon;Kim, Yong-Woo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2939-2948
    • /
    • 2020
  • This paper presents an analytic solution procedure of the rotationally restrained hinged-hinged beam subjected to transverse motions at supports based on EBT (Euler-Bernoulli beam theory). The EBT solutions are compared with the solutions based on TBT (Timoshenko beam theory) for a wide range of the rotational restraint parameter (kL/EI) of slender beams whose slenderness ratio is greater than 100. The comparison shows the followings. The internal loads such as bending moment and shearing force of an extremely thin beam obtained by EBT show a good agreement with those obtained by TBT. But the discrepancy between two solutions of internal loads tends to increase as the slenderness ratio decreases. A careful examination shows that the discrepancy of the internal loads originates from their dynamic components whereas their static components show a little difference between EBT and TBT. This result suggests that TBT should be employed even for slender beams to consider the rotational effect and the shear deformation effect on dynamic components of the internal loads. The influence of the parameter on boundary conditions is examined by manipulating the spring stiffness from zero to a sufficiently large value.

A Study of Coupled Motion in Football, Baseball Players and General Students in Thoracic Spine

  • Moon, Ok Kon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.3 no.2
    • /
    • pp.464-468
    • /
    • 2012
  • The objective of this study is to provide basic information on coupled motions in thoracic spine during lateral bending from a neutral position for football and baseball players as well as for general university students. In the experiment, a total of 30 subjects participated(football players: 10, baseball players: 10, general students: 10). All subjects were in their 20's. The subjects sat on a chair with lumbar support in a neutral position and bent to the right. As a result, for baseball players, coupled motions were observed in the opposite direction of the lateral bending in all parts of thoracic spine. For both football players and general students, coupled motions were observed in the same direction. These results confirmed that unilateral movements like baseball could affect coupled motions.

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

Vortex-induced reconfiguration of a tandem arrangement of flexible cylinders

  • Lee, Sang Joon;Kim, Jeong Jae;Yeom, Eunseop
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Oscillating motions of flexible cylinders are associated to some extent with the aerodynamic response of plants. Tandem motions of reeds with flexible stems in a colony are experimentally investigated using an array of flexible cylinders made of polydimethylsiloxane (PDMS). Consecutive images of flexible cylinders subjected to oncoming wind are recorded with a high-speed camera. To quantify oscillating motions, the average bending angle and displacement of flexible cylinders are evaluated using point-tracking method and spectral analysis. The tandem motions of flexible cylinders are closely related to the flow characteristics around the cylinders. Thus, the dynamic motions of a tandem arrangement of flexible cylinders are investigated with varying numbers of cylinders arranged in-line, numbers of cylinders in a group (behaving like a single body), and Reynolds numbers (Re). When the number of cylinders in a group increases, the damping effect caused by the support of downstream cylinders is pronounced. These results would be provide useful information on the tandem-arranged design of complex structures and energy harvesting devices.