• Title/Summary/Keyword: Support leg

Search Result 156, Processing Time 0.024 seconds

Design of Parallel Typed Walking Robot for Improvement of Walking Space and Stability (보행공간과 안정성 향상을 위한 병렬기구 보행로봇의 설계)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.310-318
    • /
    • 2008
  • This paper presents a parallel typed walking robot to improve walking space and stability region. The robot is designed by inserting an intermediate mechanism between upper leg mechanism and lower leg mechanism. The leg mechanism is composed of three legs and base, which form a parallel mechanism with ground. Seven different types of walking robot are invented by combining the leg mechanisms and an intermediate mechanism. Topology is applied to design the leg mechanism. A motor vector is adopted to determine Jacobian and a wrench vector is used to analyze dynamics of the robot. We explore the stability region of the robot from the reaction force of legs and compute ZMP including the holding force to contact the foot to a wall. This investigates a walking stability when the robot walks on the ground as well as on the wall. We examine the walking space generated by support legs and by swing legs. The robot has both a large positional walking space and a large orientational walking space so that it can climb from a floor up to a wall.

Changes of Lower Limb Joints Stiffness with Gait Speed in Knee Osteoarthritis (무릎 골관절염 환자의 보행속도에 따른 하지 관절 강성 변화)

  • Park, Hee-Won;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.723-729
    • /
    • 2012
  • Spring-like leg models have been employed to explain various dynamic characteristics in human walking. However, this leg stiffness model has limitations to represent complex motion of actual human gait, especially the behaviors of each lower limb joint. The purpose of this research was to determine changes of total leg stiffness and lower limb joint stiffness with gait speed in knee osteoarthritis. Joint stiffness defined as the ratio of the joint torque change to the angular displacement change. Eight subjects with knee osteoarthritis participated to this study. The subject walked on a 12 m long and 1 m wide walkway with three sets of four different randomly ordered gait speeds, ranging from their self-selected speed to maximum speed. Kinetic and kinematic data were measured using three force plates and an optical marker system, respectively. Joint torques of lower limb joints calculated by a multi-segment inverse dynamics model. Total leg and each lower limb joint had constant stiffness during single support phase. The leg and hip joint stiffness increased with gait speed. The correlation between knee joint angles and torques had significant changed by the degree of severity of knee osteoarthritis.

A Case Study on the effects of Elephant Foot Method considering the rate of Changes in Tunnel Cross Section (터널 단면적 변화를 고려한 각부보강 영향성 평가)

  • Lee, Gil-Yong;Oh, Hyeon-Mun;Cho, Kye-Hwan;Oh, Jeong-Ho;Kim, Jong-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2018
  • In case of excavation of the tunnel under weak ground conditions, such as fault zone, leg pile reinforcement with the purpose of suppressing tunnel crown settlement and side wall displacement is commonly applied. There are convergence, crown settlement, leg settlement, and the axial force of leg as a main factor for confirming the safety of support considering the installation angle and length of leg pile reinforcement according to the increase in rate of change of tunnel cross-section. In particular, the influence of right corner settlement, among variables for safety confirmation during excavation, has been analyzed as the dominant factor in the most important priority management showing larger displacement tendency than the increase in rate of the cross-section. And, it was analyzed that the occurrence tendency of axial force on leg pile reinforcement showed the influence of behavior according to the friction support concept mechanism of the pile reinforcement rather than the increase in rate of tunnel cross-section, as it showed a small increase compared to the increase rate of the tunnel cross-section which did not show a great correlation from the viewpoint of the change of the axial force by the length of each leg pile reinforcement with regards to the change in rate of increase in tunnel cross-section. If a certain length of the leg pile reinforcement is selected based on the above grounds, even if the cross-section of the tunnel in poor ground condition is somewhat larger, it has been proved to be a more reasonable method considering the workability and economical efficiency by not extending the length of the leg pile reinforcement by force.

Leg Muscle Activity from the Perturbation of the Support during Gait (보행 시 지지 기반 급변에 대한 하지 근신경의 반응)

  • Shin, In-Sik;Chun, Young-Jin;Seo, Jung-Seok;Choi, Chi-Sun;Nam, Ki-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.147-154
    • /
    • 2007
  • This study's purpose is to investigate the effects on leg muscle activity caused by perturbation, using a trapdoor system during the support phase of gait for healthy adults (n = 6, height $177.5{\pm}5.5cm$, weight $81.0{\pm}9.5kg$, age $30.0{\pm}3.3yrs$). The trapdoor had the functional ability of causing inversion or eversion. The release time for the trapdoor was specified for two times, 0.3 and 0.5 seconds after heel contact. While altering these variables, EMG was recorded for the leg muscles (rectus femoris, biceps femoris, vastus lateralis, tibialis anterior, gastrocnemius, soleus). The following conclusions were derived. The steptime was longer for the 0.5s eversion than 0.3s inversion condition. So in order to regain stability after the perturbation the unsupporting leg reached forward rapidly. This quick reflex can be observed through the center of pressure (COP) and its rapid change in direction. The gastrocnemius was activated throughout the total experiment. There was a low amount of activity recorded in the rectus femoris, vastus lateralis and tibialis anterior except for the condition of inversion 0.3s. For most of the conditions, the highest average EMG peak values were recorded during the condition of inversion 0.3s. The iEMG patterns were similar for the conditions of inversion 0.3s and eversion 0.3s. To cope with the rapid change in these conditions, the biceps femoris was activated. During the experiment except for the condition of normal gait, the activity of the soleus and gastrocnemius was relatively high. Therefore, to prevent injury from perturbation of the lower leg strengthening of the soleus and gastrocnemius is required. Likewise to prevent injury to the thigh strengthening for the biceps femoris.

Effects of Bilateral Arm Motor Coordination Exercises Conducted on Unstable Support Surfaces on Leg Muscle Activity and Balance in Stroke Patients (불안정한 지지면에서 양측성 과제운동이 뇌졸중 환자의 다리 근활성도와 균형에 미치는 영향)

  • Jeong-Il Kang;Dae-Keun Jeong;Seung-Yun Baek
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.65-72
    • /
    • 2023
  • PURPOSE: This study assessed the influence of bilateral coordination exercises on unstable support surfaces on leg muscle activation and balance in stroke patients. METHODS: Two groups were recruited for comparison: an experimental group of 10 individuals who performed bilateral coordination exercises on unstable surfaces and a control group of 10 individuals who performed the same exercises on stable surfaces. All participants were assigned randomly. Pre-tests were conducted to measure the leg muscle activation and balance levels of the participants prior to the experiment. The intervention was comprised of three 30-minute weekly sessions for four weeks, followed by a post-test after the four-week period. RESULTS: Significant differences were identified within the experimental group in relation to all muscles (p < .01) and balance (p < .05). Within the control group, significant differences were identified in relation to the rectus femoris muscle, biceps femoris muscle, and balance (p < .05). Significant differences between the two groups were only observed in relation to the tibialis anterior and soleus muscles (p < .05). CONCLUSION: Only the tibialis anterior and soleus muscles showed significant differences between the two groups. This effectiveness may be attributed to using an ankle strategy to maintain body balance during exercise on unstable surfaces.

TowerWalker: Speed improvement through trajectory optimization and maximally elongated leg (타워워커: 보행 경로 최적화와 극대화된 다리 길이를 통한 속도 향상)

  • Nam, Jiwon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.389-396
    • /
    • 2016
  • In order to maximize the speed of Theo Jansen Mechanism in an given design space and prototyping material, the trajectory path was maximized according to several literature reviews, and the lower leg was elongated maximally in order to minimize the shift between support phase and transfer phase.

  • PDF

Kinematic Characteristics Based on Proficiency In Geoduepyeopchagi in Taekwondo Poomsae Koryo

  • So, Jae Moo;Kang, Sung-Sun;Hong, AhReum;Jung, Jong Min;Kim, Jai Jeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.343-351
    • /
    • 2016
  • Objective: The purpose of this study was to help improve game performance and provide preliminary data to enhance the efficiency of the kick and stability of the support foot by comparing the kinematic characteristics of the repeated side kick (geodeupyeopchagi) in poomsaeKoryo between expert and non-expert groups. Method: The subjects were divided into 2 groups according to proficiency in Taekwondo, an expert group and a non-expert group (n = 7 in each group), to observe the repeated side-kick technique. Four video cameras were set at a speed of 60 frames/sec and exposure time of 1/500 sec to measure the kinematic factors of the 2 groups. The Kwon3D XPprogramas used to collect and analyze three-dimensional spatial coordinates. Ground reaction force data were obtained through a force plate with a 1.200-Hz frequency. An independent samplesttest was performed, and statistical significance was defined as .05. The SPSS 18.0 software was used to calculate the mean and standard deviation of the kinematic factors and to identify the difference between the experts and non-experts. Results: The angular displacement of the hip joint in both the expert and non-expert groups showed statistical significance on E1 and E4 of the left support foot and E5 of the right foot (p<.05). The angle displacement of the knee joint in both groups showed statistical significance on E4 of the left support foot, and E1 and E2 of the right foot (p<.05). The angular velocity of the lower leg in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 and E6 of the right foot (p<.05). The angular velocity of the foot in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 of the right foot (p<.05). The vertical ground reaction force in both groups showed statistical significance on E2 (p<.05). The center of pressure in all directions in both groups showed statistical significance (p<.5). Conclusion: While performing the repeated side kick (geodeupyeopchagi), the experts maintainedconsistency and stability of the angle of the support leg while the kick foot moved high and fast. On the other hand, the angle of the support foot of non-experts appeared inconsistent, and the kick foot was raised, relying on the support leg, resulting in unstable and inaccurate movement.

MUSCLE PROTEIN SYNTHESIS IN VITRO IN CHICKS FED A LOW-PROTEIN DIET

  • Kita, K.;Kuzuya, Y.;Matsunami, S.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.171-174
    • /
    • 1996
  • Muscle protein synthesis in vitro was measured in chicks fed low-protein(10% CP) and control(20% CP) diets. Right leg muscles (M. gastrocnemius) were mounted on a support made of stainless steel to stretch in constant tension, whereas left leg muscles were unmounted. Both leg muscles were incubated in Dulbecco's modified Eagle's medium including L-[$4-^3H$] phenylalanine for 60 min to measure in vitro protein synthesis. There was no significant difference in fractional synthesis rate(FSR) of muscle protein between both dietary protein levels, whereas FSR with stretch in constant tension was significantly higher than that without constant tension due to an increase in the absolute synthesis rate(ASR) per unit RNA(the efficiency of RNA to synthesize protein). The ASR of muscle protein in chicks fed the control diet was significantly higher than that in the low-protein diet group.

An Efficient Apeliodic Static Walking Algorithm for Quadrupecl Walking Machine (4족 보행 로봇의 효율적인 비주기 정적 보행 알고리즘)

  • 정경민;박윤창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.42-42
    • /
    • 2000
  • This paper concerns an efficient aperiodic static crab walking algorithm for quadruped walking machine in rough terrain. In this algorithm, the requirements for forward stability margin and backward stability margin could be given differently in order to consider the slope of terrain and disturbances resulting from moving velocity. To restrict the searing regions for motion variables, such as moving distances until a leg is lifted or is placed, the standard leg transferring sequence is decided to be that of wave gaits. standard support pattern is also proposed that enables the quadruped to continue forward motion using the standard leg transferring sequence without falling into deadlock.

  • PDF

A study on the Biped Walking Robot applying a Gravity Compensator (중력보상기를 적용한 이족보행로봇 연구)

  • Choi, Hyeung-Sik;Na, Won-Hyun;Kim, Dong-Ho;Chu, U-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.55-62
    • /
    • 2010
  • In this paper, the structure of a new gravity compensator was studied, and the biped walking robot applying a gravity compensator was presented to improve the performance of the robot. The robot had 13 degree of freedom and is driven by the joint actuator with the gravity compensator. Each leg of the robot is composed of six joints three joints at the hip, a joint at the knee, and two joints at the ankle. The leg of the robot was designed to support 74kg weight including 30kg payload thanks to the gravity compensator. The performance of the robot was presented by reducing the payload applied to the leg joint of the robot thanks to the gravity compensator.