• Title/Summary/Keyword: Supply velocity

Search Result 310, Processing Time 0.031 seconds

Design Optimization for Air Ducts and Fluid Pipes at Electromagnetic Pulse(EMP) Shield in Highly Secured Facilities (EMP 방호시설의 덕트 및 배관 최적 설계 방안)

  • Pang, Seung-Ki;Kim, Jae-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • This study conducted a computational fluid dynamics(CFD) analysis to find an appropriate diameter or sectional area of air ducts and fluid pipes which have an electromagnetic pulse(EMP) shied to protect indoor electronic devices in special buildings like military fortifications. The result shows that the optimized outdoor air intake size can be defined with either the ratio of the maximum air velocity in the supply duct to the air intake size, or the shape ratio of indoor supply diffuser to the outdoor air intake. In the case of water channel, the fluid velocity at EMP shield with the identical size of the pipe, decreases by 25% in average due to the resistance of the shield. The enlargement of diameter at the shield, 2 step, improves the fluid flow. It illustrated that the diameter of downstream pipe size is 1step larger than the upstream for providing the design flow rate. The shield increases friction and resistance, in the case of oil pipe, so the average flow velocity at the middle of the shield increase by 50% in average. In consideration of the fluid viscosity, the oil pipe should be enlarged 4 or 5 step from the typical design configuration. Therefore, the fluid channel size for air, water, and oil, should be reconsidered by the engineering approach when EMP shield is placed in the middle of channel.

A Study on Scoring Resistance In Lubricated Sliding Contact (윤활 마찰면의 스코링 저항성에 관한 연구)

  • 김해원;홍재학;허준영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.358-366
    • /
    • 1990
  • As a basic study to clarify the scoring resistance in lubricated sliding contact, the temperature rise on frictional surface was analyzed by theoretical method and the effects of various factors on the temperature rise were examined. On the basic of the results obtained theoretically, the practical equations to calculate the maximum average temperature of the contact surface were proposed which are applicable to sliding contact. Then, the effects of sliding velocity and oil temperature on the seizure behavior, and the relation between seizure and temperature rise were investigated. The following conclusions are deduced : The maximum average temperature rise and the other bulk temperature. The former is affected by the size of heat supply region and the sliding velocity, the latter is affected by heat transfer coefficient. Without regard to the operating condition such as sliding velocity, oil temperature and operating time at each load-step, the maximum average temperature just before seizure is nearly constant except in the region of lower velocity. Consequently, the maximum average temperature of the contact surface in boundary lubrication is a useful criterion to predict the scoring of sliding contact.

Effect of Particle Loading Ratio and Orifice Exit Velocity on a Particle-Laden Jet

  • Paik, Kyong-Yup;Yoon, Jung-Soo;Hwang, Jeong-Jae;Chung, Jae-Mook;Bouvet, Nicolas;Yoon, Young-Bin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.296-304
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles with water, basic experiments on a particle laden jet are necessary. The purpose of the present study is to understand the effect of particle loading ratio on the particle spray characteristics (i.e. spreading angle, distribution of particle number density, velocity profiles, and particle developing region length). Hydro-reactive Al2O3 particles with a primary particle diameter of 35~50 ${\mu}m$ are used in this experiment. An automated particle feeder was designed to supply constant particle mass flowrates. Air is used as the carrier gas. To determine the air velocity at the orifice exit, tracers (aluminum oxide, 0.5~2 ${\mu}m$ primary diameter) are also supplied by a tracer feeder. A plain orifice type injector with 3 mm diameter, and 20 mm length was adopted. Particle image velocimetry is used to measure the mean and fluctuating velocity components along the axial and radial directions.

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.

Lifting off simulation of an offshore supply vessel considering ocean environmental loads and lifting off velocity

  • Jeong, Dong-Hoon;Roh, Myung-Il;Ham, Seung-Ho
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.181-198
    • /
    • 2015
  • An OSV (Offshore Support Vessel) is being used to install a structure which is laid on its deck or an adjacent transport barge by lifting off the structure with its own crane, lifting in the air, crossing splash zone, deeply submerging, and lastly landing it. There are some major considerations during these operations. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and lifting off velocity are not suitable, the collision can be occurred due to the relative motion between the structure and the OSV or the transport barge. To solve this problem, this study performs the physics-based simulation of the lifting off step while the OSV installs the structure. The simulation includes the calculation of dynamic responses of the OSV and the structure, including the collision detection between the transport barge and the structure. To check the applicability of the physics-based simulation, it is applied to a problem of the lifting off step by varying the ocean environmental loads and the lifting off velocity. As a result, it is confirmed that the operability of the lifting off step are affected by the conditions.

Nozzle configurations for partially premixed interacting jet flame to enhance blowout limits (다수 부분 예혼합 화염의 화염날림 유속 확대)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single jet, the flames are not extinguished over 2oom/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\Phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying Sand ${\Phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\Phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

  • PDF

A Study on the Conditions of Injection Pressurization in the Smoke-Control Zone II. Analysis of the Conditions for Closing Force of Fire Door with Variation of Angular Velocity (제연구역 방화문의 각속도 변화와 폐쇄 조건 분석)

  • Lee, Chang-Wook;Kim, Hong-Jin;Choi, Young-Ki;Youm, Moon Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.6-10
    • /
    • 2013
  • This study aims to construct the performance data for smoke-control zone and realize the safety of injection and pressurization room which is composed of supply air pressure zone, vestibule, smoke-control zone and stairwell. To obtain this, smoke-control system and the device of the opening-closing force of fire door are manufactured. This subject is the analysis of the closing force, angular velocity and fire door size in the case of fixed volume flow rate. Based on the results, closing force increased as fire door size and closing angular velocity increases. Also, it is remark that there exists a critical angular velocity, which maintains constant maximum closing force even though the angular velocity increases more.

An Experimental Study on the Ventilation velocity of the Variation of Burning rate in Tunnel Fires - Heptane pool fire case (터널 화재시 배연속도가 연소율변화에 미치는 실험적 연구 - Heptane 풀화재 경우)

  • Ryou, Hong-Sun;Yang, Seung-Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiments using Froude scaling were conducted to investigate the ventilation velocity of the variation of burning rate in tunnel fires. The heptane square pool fire with heat release rate ranging from 3.71~15.6 kW were used. The burning rate of fuel was obtained by measuring mass using load cell and temperature distributions were measured by K-type theomocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In heptane pool fire case, the increase in ventilation velocity incresed the burning rate due to the direct supply of oxygen to the fire plume. For the same dimensionless velocity($\bar{V}$), burning rate increased as the size of pool fire decreased.

  • PDF

Nozzle Configurations for Partially Premixed Interacting Jet Flame to Enhance Blowout Limits (화염의 상호작용에 의한 부분 예혼합화염의 화염날림 유속 확대)

  • Kim, Jin-Hyun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.71-79
    • /
    • 2005
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of $40{\sim}72$ times the diameter of single jet, the flames are not extinguished even in 200m/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying S and ${\phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

An Experimental Study on the Effect of Ventilation Velocity on the Burning Rate in Longitudinal Ventilation Tunnel Fires (종류식 배연 터널 화재시 배연속도가 연소율에 미치는 영향에 대한 실험적 연구)

  • Yang Seung-Shin;Ryou Hong-Sun;Choi Young-Ki;Kim Dong-Hyeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.914-921
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiment using Froude scaling were conducted to investigate the effect of longitudinal ventilation velocity on the burning rate in tunnel fires. The methanol pool fires with heat release rate ranging from 2.02 kW to 6.15 kW and the n-heptane pool fires with heat release rate ranging from 2.23 kW to 15.6 kW were used. The burning rate of fuel was obtained by measuring the fuel mass at the load cell. The temperature distributions were observed by K-type thermocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In methanol pool fire, the increase in ventilation velocity reduces the burning rate. On the contrary in n-heptane pool fire, the increase in ventilation velocity induces large burning rate. The reason for above conflicting phenomena lies on the difference of burning rate. In methanol pool fire, the cooling effect outweighs the supply effect of oxygen to fire plume, and in n-heptane pool vice versa.