• Title/Summary/Keyword: Supply System

Search Result 8,210, Processing Time 0.035 seconds

Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling (급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경)

  • 김요셉;김영일;유호선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

A Study on the Performance of Diesel Automobile Engine with Ultrasonic Fule Supply System(III) (On the case of Turbo-charging Diesel Engine) (초음파 연료공급장치용 디젤자동차의 성능 향상에 관한 연구(III) (과급 디젤기관에 대하여))

  • 최두석;이흥영;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.12-18
    • /
    • 1995
  • To improve the performance of diesel automobile engine, we designed new fuel supply system named ultrasonic fuel supply system. The performance test of diesel automobile engine carried out to examine possibility of practical use of ultrasonic fuel supply system to test engine. This paper deals with the comparative results of performance test of diesel automobile engine in terms of smoke, HC, SFC, PS, thermal, efficiency, torque. Following are obtained result. 1) In naturally aspirated diesel engine, when we use ultrasonic fuel supply system output, fuel consumptions are improved and exhaust gas reduced significantly. 2) In turbo-charging diesel engine both using of ultrasonic fuel supply system and using of conventional injector, engine performance and exhaust gas temperature are almost constant. 3) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, NOx are emitted approximately 3.5% higher than total average. 4) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, smoke and CO are 17% and 11.8% improved respectively.

  • PDF

Development of Supply System Module for Liquid Rocket Engine (액체로켓엔진 공급시스템 모듈 개발)

  • Kim, Hye-Min;Lee, Sang-Bok;Kim, Wan-Jo;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.79-84
    • /
    • 2010
  • The supply system module of the liquid rocket engine has been developed, which consists of the various supply system components such as pipes, orifices, elbows, bellows, valves and flanges. This module can size the components and calculate pressure drops between them. For the assembly of the supply system components, the supply system module can evaluate the number of the components, total pressure drop, outlet pressure and total system weight.

  • PDF

How VMI and Consignment Jointly Affect Supply Chain Performance

  • Ryu, Chung-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.3
    • /
    • pp.31-39
    • /
    • 2015
  • Purpose - Due to its potential to improve supply chain operations, supply chain collaboration has attracted significant attention from both academics and practitioners. This study focuses on VMI, in collaboration with consignment, and examines its impact on supply chain performance. Research design, data, and methodology - This study employs the analysis of mathematical models, formulated based on the proposed supply chain framework. Using numerical examples, it evaluates the performance of three supply chain systems: one including VMI and consignment, a consignment-only system, and a traditional system. Results - The combination of VMI and consignment produces greater supply chain benefits than the consignment-only and traditional systems. Whereas only the performance of the buyer improves with the consignment-only system, the system with VMI and consignment is beneficial to both the buyer and supplier. Conclusions - The results of this study reveal that the inclusion of the additional collaborative function of VMI makes consignment a better supply chain collaboration program. Future studies should examine issues regarding the testing of diverse collaboration programs and the building of a firm theoretical background.

A Study on the Flow rate Analysis of a Sanitary Fixture for Water Supply Piping System (급수배관방식에 따른 욕실 위생기구의 유량분석에 관한 연구)

  • JANG, Y.K.;KIM, D.J.;SUH, B.T.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.9-14
    • /
    • 2011
  • The flow rate analysis for sanitary fixtures has been studied to determine the water supply piping system and size. The study has been carried out to analyze for a various water supply pressure and piping size theoretically. Also, the study has been carried out to analyze for a various water supply piping system experimentally. The water supply pressure is varied from 0.01MPa to 0.07MPa, and the piping size is varied from 6mm to 15mm. The water supply piping systems are one-to-one, all-loop-type, and bathroom-loop-type water supply piping system. The results indicate that the piping size is able to supply water fully in case of smaller than 15mm if the water supply pressure keep an necessary minimum pressure. And the gap of flow rate is very little for the various water supply piping systems.

Evaluation on Utilizing Systems of Incineration Heat as Resource cycling Type (자원순환형 소각열 이용시스템에 관한 평가)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • How to plan the energy system is one of the keys f3r constructing the Environment -Friendly City. for this reason, a great number of surveys for utilizing unused energy have conducted by a planner. In regard to unused energy, the heat from incineration plants classify as a unused energy having high-exergy-energy. From this point of view, It is studied about the plant systems providing heat to district heating & cooling(D.H.C) and producing electric power. It is divided four system models as system I (10K [kgf/cm$^2$) vapor as outlet of boiler, supply far 10K vapor and return to 60$^{\circ}C$ as supply condition of district heating), system II (30 K vapor as outlet of boiler, supply for 5t vapor and return to 60f as supply condition of district heating), system 111 (30 K vapor as outlet of boiler, supply for 85$^{\circ}C$ hot water and return to 60$^{\circ}C$ as supply condition of district heating), system IV (30 K vapor as outlet of boiler, supply for 47$^{\circ}C$ hot water and return to 40t as supply condition of district heating). The results from the upper condition of four system, System II got a proper on economical benefits and system IV calculated as benefiting on energy saving effects, and suggest indifference curve as the total evaluation method of both economical benefits and energy saving.

How Quick Response affects the Supply Chain Performance

  • RYU, Chungsuk
    • Journal of Distribution Science
    • /
    • v.17 no.7
    • /
    • pp.87-98
    • /
    • 2019
  • Purpose - The goal of this research is to examine the influence of Quick Response on the supply chain performance. Furthermore, this study investigates the potential of Quick Response to be a more advanced form of supply chain collaboration program with extensive information sharing activities. Research design, data, and methodology - The mathematical model is developed to represent the two stage supply chain system with a single manufacturer and one retailer. In the numerical study with the proposed mathematical models, three supply chain systems including the traditional system, Quick Response, and the fully shared information system are compared in terms of their profits. Results - The numerical analysis shows both manufacturer and retailer obtain greater profits under Quick Response than in the traditional system. While the fully shared information outperforms Quick Response as well as the traditional system, it results in lower manufacturer's profit compared with Quick Response. Conclusions - According to the numerical examples, Quick Response is the effective supply chain collaboration program that is beneficial to every supply chain member. The fully shared information system, as a more advanced form of collaboration than Quick Response can bring more benefits to the whole supply chain system, but it is necessary to prepare the proper incentive program that enables every member to share its benefits equally.

Development of a Performance-Based Supply Chain Management System (지표기반 공급사슬 성과관리 시스템을 활용한 효과적인 공급사슬관리)

  • Min, Dae-Gi;Park, Jong-Duck
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.382-391
    • /
    • 2003
  • Supply chain performance management is the essential part of various business activities in supply chain management area, and integrating it with general business management improves the supply chain performance. Although supply chain performance management is important and expected of market growth, there are few researches on this area and lack of practical applications. To resolve these problems, this paper presents a new performance management methodology for a supply chain integrating SCOR (Supply Chain Operational Reference) model and Balanced Scorecard (BSC). And we develop a framework of the Supply Chain Performance Management System (SCPMS) based on this methodology, and implement a prototype system.

LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System (지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링)

  • Park, Young Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

Development of a Component-Based Distributed Supply Chain Planning System (컴포넌트에 기반한 분산 공급사슬계획 시스템 개발)

  • 정한일;박찬권;이기창
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.2
    • /
    • pp.143-156
    • /
    • 2002
  • The objective of supply chain planning is to satisfy the requirements for minimizing inventory costs, transportation costs, and lead times throughout the supply, production and distribution stage dispersed geographically. Therefore, the supply chain planning system should have functionalities to resolve complex optimization problems that have characteristics of multi-stage and multi-product. Ant the system should also support collaborative decision making among distributed business partners. In this study, we proposed a distributed architecture for the supply chain planning system. To do this, we analyzed functional requirements by using IDEF-0(ICAM Definition-0) methodology, defined required components, and designed each component by using object-oriented methodology. We implemented a prototype system based on CORBA (Common Object Request Broker Architecture) to show that the proposed distributed architecture based on component technology is feasible and can solve supply chain planning problem collaboratively.

  • PDF