• Title/Summary/Keyword: Supervised classification

Search Result 423, Processing Time 0.026 seconds

A Sliding Window-based Multivariate Stream Data Classification (슬라이딩 윈도우 기반 다변량 스트림 데이타 분류 기법)

  • Seo, Sung-Bo;Kang, Jae-Woo;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • In distributed wireless sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. We propose a classification framework for continuous multivariate stream data. The proposed approach works in two steps. In the preprocessing step, it takes input as a sliding window of multivariate stream data and discretizes the data in the window into a string of symbols that characterize the signal changes. In the classification step, it uses a standard text classification algorithm to classify the discretized data in the window. We evaluated both supervised and unsupervised classification algorithms. For supervised, we tested Bayesian classifier and SVM, and for unsupervised, we tested Jaccard, TFIDF Jaro and Jaro Winkler. In our experiments, SVM and TFIDF outperformed other classification methods. In particular, we observed that classification accuracy is improved when the correlation of attributes is also considered along with the n-gram tokens of symbols.

Feature Selection of Training set for Supervised Classification of Satellite Imagery (위성영상의 감독분류를 위한 훈련집합의 특징 선택에 관한 연구)

  • 곽장호;이황재;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.39-50
    • /
    • 1999
  • It is complicate and time-consuming process to classify a multi-band satellite imagery according to the application. In addition, classification rate sensitively depends on the selection of training data set and features in a supervised classification process. This paper introduced a classification network adopting a fuzzy-based $\gamma$-model in order to select a training data set and to extract feature which highly contribute to an actual classification. The features used in the classification were gray-level histogram, textures, and NDVI(Normalized Difference Vegetation Index) of target imagery. Moreover, in order to minimize the errors in the classification network, the Gradient Descent method was used in the training process for the $\gamma$-parameters at each code used. The trained parameters made it possible to know the connectivity of each node and to delete the void features from all the possible input features.

A Study on GPR Image Classification by Semi-supervised Learning with CNN (CNN 기반의 준지도학습을 활용한 GPR 이미지 분류)

  • Kim, Hye-Mee;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.197-206
    • /
    • 2021
  • GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

Semi-supervised SAR Image Classification with Threshold Learning Module (임계값 학습 모듈을 적용한 준지도 SAR 이미지 분류)

  • Jae-Jun Do;Sunok Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.177-187
    • /
    • 2023
  • Semi-supervised learning (SSL) is an effective approach to training models using a small amount of labeled data and a larger amount of unlabeled data. However, many papers in the field use a fixed threshold when applying pseudo-labels without considering the feature-wise differences among images of different classes. In this paper, we propose a SSL method for synthetic aperture radar (SAR) image classification that applies different thresholds for each class instead of using a single fixed threshold for all classes. We propose a threshold learning module into the model, considering the differences in feature distributions among classes, to dynamically learn thresholds for each class. We compare the application of a SSL SAR image classification method using different thresholds and examined the advantages of employing class-specific thresholds.

A Study on the Performance of Parallelepiped Classification Algorithm (평행사변형 분류 알고리즘의 성능에 대한 연구)

  • Yong, Whan-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • Remotely sensed data is the most fundamental data in acquiring the GIS informations, and may be analyzed to extract useful thematic information. Multi-spectral classification is one of the most often used methods of information extraction. The actual multi-spectral classification may be performed using either supervised or unsupervised approaches. This paper analyze the effect of assigning clever initial values to image classes on the performance of parallelepiped classification algorithm, which is one of the supervised classification algorithms. First, we investigate the effect on serial computing model, then expand it on MIMD(Multiple Instruction Multiple Data) parallel computing model. On serial computing model, the performance of the parallel pipe algorithm improved 2.4 times at most and, on MIMD parallel computing model the performance improved about 2.5 times as clever initial values are assigned to image class. Through computer simulation we find that initial values of image class greatly affect the performance of parallelepiped classification algorithms, and it can be improved greatly when classes on both serial computing model and MIMD parallel computation model.

  • PDF

Temporal Analysis on the Transition of Land Cover Change and Growth of Mining Area Using Landsat TM/+ETM Satellite Imagery in Tuv, Mongolia (Landsat TM/+ETM 위성영상을 이용한 몽골 Tuv지역의 토지피복변화 및 광산지역확대 추이분석)

  • Erdenesumbee, Suld;Cho, Misu;Cho, Gisung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.451-457
    • /
    • 2014
  • Recently, the land degradation and pasture erosion in Tuv, located around Ulaanbaatar of Mongolia, have been increasing sharply due to escalating developments of mining sectors, well as the density of populations. Because of that, we have chosen the urban and mining area of Tuv for our study target. During the study, the temporal changes of land cover in Tuv, Mongolia were observed by the Landsat TM/+ETM satellite images from 2001 to 2009 that provided the fundamental dataset to apply NDVI and K-Mean algorithm of Unsupervised Classification and Maximum likelihood classification(MLC) of Supervised Classification in order to conclude in land cover change analyzation. The result of our study implies that the growth of mining area, the climate change, and the density of population led the land degradation to desertification.

Analysis of Land Cover Changes Based on Classification Result Using PlanetScope Satellite Imagery

  • Yoon, Byunghyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.671-680
    • /
    • 2018
  • Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.

Variational Auto-Encoder Based Semi-supervised Learning Scheme for Learner Classification in Intelligent Tutoring System (지능형 교육 시스템의 학습자 분류를 위한 Variational Auto-Encoder 기반 준지도학습 기법)

  • Jung, Seungwon;Son, Minjae;Hwang, Eenjun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1251-1258
    • /
    • 2019
  • Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.

Methodology for Classifying Hierarchical Data Using Autoencoder-based Deeply Supervised Network (오토인코더 기반 심층 지도 네트워크를 활용한 계층형 데이터 분류 방법론)

  • Kim, Younha;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.185-207
    • /
    • 2022
  • Recently, with the development of deep learning technology, researches to apply a deep learning algorithm to analyze unstructured data such as text and images are being actively conducted. Text classification has been studied for a long time in academia and industry, and various attempts are being performed to utilize data characteristics to improve classification performance. In particular, a hierarchical relationship of labels has been utilized for hierarchical classification. However, the top-down approach mainly used for hierarchical classification has a limitation that misclassification at a higher level blocks the opportunity for correct classification at a lower level. Therefore, in this study, we propose a methodology for classifying hierarchical data using the autoencoder-based deeply supervised network that high-level classification does not block the low-level classification while considering the hierarchical relationship of labels. The proposed methodology adds a main classifier that predicts a low-level label to the autoencoder's latent variable and an auxiliary classifier that predicts a high-level label to the hidden layer of the autoencoder. As a result of experiments on 22,512 academic papers to evaluate the performance of the proposed methodology, it was confirmed that the proposed model showed superior classification accuracy and F1-score compared to the traditional supervised autoencoder and DNN model.

Study on semi-supervised local constant regression estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.579-585
    • /
    • 2012
  • Many different semi-supervised learning algorithms have been proposed for use wit unlabeled data. However, most of them focus on classification problems. In this paper we propose a semi-supervised regression algorithm called the semi-supervised local constant estimator (SSLCE), based on the local constant estimator (LCE), and reveal the asymptotic properties of SSLCE. We also show that the SSLCE has a faster convergence rate than that of the LCE when a well chosen weighting factor is employed. Our experiment with synthetic data shows that the SSLCE can improve performance with unlabeled data, and we recommend its use with the proper size of unlabeled data.