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Abstract

Many different semi-supervised learning algorithms have been proposed for use with
unlabeled data. However, most of them focus on classification problems. In this paper,
we propose a semi-supervised regression algorithm called the semi-supervised local con-
stant estimator (SSLCE), based on the local constant estimator (LCE), and reveal the
asymptotic properties of SSLCE. We also show that the SSLCE has a faster conver-
gence rate than that of the LCE when a well chosen weighting factor is employed. Our
experiment with synthetic data shows that the SSLCE can improve performance with
unlabeled data, and we recommend its use with the proper size of unlabeled data.

Keywords: Convergence rate, local polynomial regression, Nadaraya Watson estimator,
semi-supervised regression, smoothing parameter, weighting factor.

1. Introduction

In many practical applications such as speech recognition, email classification and text
classification, there is often a large amount of unlabeled data available. However, labeling
this data is expensive, difficult, and time consuming. The value of the unlabeled data was
not clearly understood, bringing about a rise in the study of semi-supervised learning (SSL)
starting in the mid-1990s. As the demand for unlabeled data has increased, SSL has become
increasingly important as an analysis tool.

The promising empirical success of SSL algorithms in favorable situations has triggered
several recent attempts (Lafferty and Wasserman, 2008; Niyogi, 2008) at developing a the-
oretical understanding of SSL. In a recent paper, Singh et al. (2008) established that if
the complexity of the distributions under consideration is too high to be understood using
labeled data points, but is small enough to be understood using unlabeled data points, us-
ing a finite sample analysis in SSL can improve the performance of a supervised learning
task. There have been many successful practical SSL algorithms generated as summarized in
Chapelle et al. (2006), Sindhwani (2005), Zhu (2005), Xu et al. (2010) and Zhu and Goldberg
(2009).
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It is worthwhile noting that the previous research focused primarily on classification. Ac-
cording to the work of Belkin et al. (2006) and Zhu (2005), a graph-based method could
be applied to the regression estimator. This means that unlabeled data can contain help-
ful information and can increase the performance of the regression estimator. Zhou and Li
(2005) proposed a semi-supervised regression (SSR) algorithm named COREG that boosts
regression accuracy by exploiting unlabeled data in two k-nearest neighbor regression esti-
mators using different distance metrics, each of which labels the unlabeled data for the other
regression estimator. Wang et al. (2006) developed an SSR algorithm called semi-supervised
kernel regression (SSKR) based on the classical kernel regression estimator. A weighting fac-
tor is used to fine-tune the effect of the unlabeled data in the SSKR. They also investigate
the connection between the SSKR and the graph-based method. They showed that with
a properly-chosen weighting factor, the SSKR remarkably outperformed kernel regression
and the graph-based method. Cortes and Mohri (2007) dealt with regression problems in a
transductive setting. They gave a new error boundary for transductive regression that holds
for all bounded loss functions and coincides with the tight classification bounds of Vapnik
(1998). Based on the given error bound, they presented a new algorithm for transductive
regression that performs well and can scale to large data sets. Xu et al. (2011) proposed
a semi-supervised least squares support vector regression and showed their feasibility and
efficiency by experiment on a corn data set.

Some existing SSR methods have empirically shown promising performance. However,
Lafferty and Wasserman (2008) showed that SSR methods based on regularization using
graph Laplacians do not lead to faster minimax rates of convergence than those of kernel
regression estimators. They also revealed that the estimators using unlabeled data do not
have smaller risks than the estimators that use only labeled data when the dimension of
the input variable is greater than 1. In this paper, we derive an SSLCE from the LCE view
point for the univariate input variable. The derived estimator is the same as the SSKR
estimator proposed by Wang et al. (2006). However, we reveal the asymptotic properties of
the SSLCE. From the asymptotic properties, we know that with a properly-chosen weighting
factor, we can obtain an SSLCE that has a faster convergence rate than LCE O(n−4/5).
From the numerical experiment and theoretical analysis, we also recommend using a proper
quantity of unlabeled data as a larger amount of unlabeled data does not guarantee better
performance for the SSLCE. We have confirmed this proposed assertion through numerical
study.

The rest of this paper is organized as follows. Section 2 reviews the LCE. Section 3
introduces the SSLCE. Section 4 presents some asymptotic properties of SSLCE and section
5 gives some numerical results. Section 5 gives our conclusion and discussion for further
study.

2. Local constant estimator

It was shown extensively in the literature that the local polynomial approximation method
has various nice features (Fan and Gijbels, 1996). Assume that the bivariate data (X1, Y1), · · · ,
(XnL

, YnL
) is an i.i.d sample from the model

Y = m(X) + σ(X)ε, E(ε) = 0, V ar(ε) = 1



Semi-supervised local constant regression 581

where X and ε are independent random variables. The objective is to estimate the regres-
sion function m(x) = E(Y |X = x) based on the observations (X1, Y1), ..., (XnL

, YnL
). The

marginal density of X will be denoted by fX(·). The above location-scale model is not a
necessity, but a convenient way to introduce the notations. Suppose that the (p+1)th deriva-
tive of m(x) at the point x0 exists. We then approximate m(x) locally by a polynomial of
order p :

m(x) ∼ m(x0) +m′(x0)(x− x0) + · · ·+m(p)(x0)(x− x0)p/p! (2.1)

for x in a neighborhood of x0, and do a local polynomial regression fit

minβ

nL∑
i=1

{Yi −
p∑
j=0

βj(Xi − x0)j}2KhL
(Xi − x0) (2.2)

where β = (β0, · · · , βp)′. Here Kh(·) denotes a nonnegative kernel function with smoothing

parameter hL which determines the size of the neighborhood of x0. Let {β̂ν} denote the
solution to the weighted least squares problem (2.2). Then it is obvious from the Taylor

expansion (2.1) that ν! β̂ν estimates m(ν)(x0), ν = 0, · · · , p. When p = 0 , the objective
function (2.2) becomes

minβ0

nL∑
i=1

{Yi − β0}2KhL
(Xi − x0) (2.3)

and the solution β̂0 = m̂L(x0) is

m̂L(x0) =

∑nL

i=1 YiKhL
(Xi − x0)∑nL

i=1KhL
(Xi − x0)

. (2.4)

The above LCE in (2.4) is the same as the Nadaraya-Watson estimator which is inde-
pendently proposed by Nadaraya (1964) and Watson (1964) and one of the most popular
methods in kernel regression.

3. Semi-supsevised local constant estimator

In this section we introduce the formulation of SSLCE. To utilize the unlabeled data set
U = {XnL+1, · · · , Xn}, where n = nU + nL is total size of the labeled and unlabeled data,
we modified the objective function as

minβ0

nL∑
i=1

(Yi − β0)2KhL
(Xi − x0) + λ

n∑
j=nL+1

(Ŷj − β0)2KhU
(Xj − x0), (3.1)

where λ is a weighting factor to modulate the labeled and unlabeled data, and hU is a
smoothing parameter used in unlabeled data. Ŷj is a pilot estimator of m(Xj) for j =
nL + 1, · · · , n. In this paper we used LCE as the pilot estimator. The solution of (3.1) is the
SSLCE

m̂SS(x0) =

∑nL

i=1 YiKhL
(Xi − x0) + λ

∑n
j=nL+1 ŶjKhU

(Xj − x0)∑nL

i=1KhL
(Xi − x0) + λ

∑n
i=nL+1KhU

(Xj − x0)
(3.2)
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The estimator (3.2) is the same as the one proposed by Wang et al. (2006) but they used
the same value of hL and hU . According to the their work, the estimator is closely related
with graph-based method and provide another viewpoint for graph-based method. They
showed that it remarkably outperforms kernel regression and the graph based method.

4. Asymptotic properties

To proceed the asymptotic properties, we need the follwing conditions:

1. The regression function m(x) has a bounded and continuous second derivative.

2. The conditional variance σ2(x) = var(Y |X = x) is bounded and continuous.

3. The marginal density fX of the covariate X is continuous.

4. The kernel function K is bounded density function with
∫∞
−∞ xK(x)dx = 0 and∫∞

−∞ x4K(x)dx ≤ ∞

In the sequel we denote µi =
∫∞
−∞ uiK(u)du, νi =

∫∞
−∞ uiK2(u)du. We state the following

pointwise and global properties of the SSLCE and omit their proofs.

Theorem 4.1 Under the conditions 1-4, if hL → 0 and nLhL → ∞, then LCE m̂L(x) has
the asymptotic distribution

m̂L(x)−m(x)→ N(h2Lµ2B(x),
σ2(x)ν0

nLhLfX(x)
) (4.1)

where B(x) = 1
2m
′′(x) +m′(x)f ′X(x)/fX(x).

Theorem 4.2 Under the conditions 1-4, if hU → 0 and nUhU → ∞, SSLCE m̂SS(x) has
the asymptotic distribution

m̂SS(x)−m(x)→ N(
nLh

3
L + λnUh

3
U

nLhL + λnUhU
µ2B(x),

nLhLσ
2(x)ν0

(nLhL + λnUhU )2fX(x)
). (4.2)

Theorem 4.3 Under the conditions of Theorem 1, LCE m̂L(x) has the asymptotic mean
integrated squared error (AMISE)

AMISE(m̂L) = c1h
4
L +

c2
nLhL

(4.3)

where c1 = µ2
2

∫
B2(x)dx and c2 = ν0

∫ σ2(x)
fX(x)dx.
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Theorem 4.4 Under conditions of Theorem 2, SSLCE estimator m̂SS(x) has the AMISE

AMISE(m̂SS) = c1(
nLh

3
L + λnUh

3
U

nLhL + λnUhU
)2 +

c2nLhL
(nLhL + λnUhU )2

. (4.4)

From the Theorem 3 and 4 we know that m̂SS can have faster convergence rate than that
of m̂L with a well chosen weighting factor. For examle if we choose λ such that O(nLh

3
L) >

O(λnUh
3
U ) and O(nLhL) < O(λnUhU ) then AMISE(m̂SS) is smaller than AMISE(m̂L) .

This means that the unlabeled data can be used to make SSLCE have faster convergence
rate. Since nL < nU we may denote nU = npL, p > 1. In order to have faster convergence rate

the above inequalities can be written as O(λn
2p/5
L ) < O(n

2/5
L ) and O(λn

4p/5
L ) < O(n

4/5
L ). So

we can see a < p < b for some a, b (1 < a < b). This says that larger nU does not guarantee
better performance of SSLCE.

5. Numerical studies

Since Wang et al. (2006) has conducted several experiments for the SSLCE on many data
sets, we can refer to their work on the behavior of the SSLCE. We have focused our study
on the impact of the weighting factor and the size nU of the unlabeled data.

The performance of the proposed SSLCE is illustrated through the use of simulated data.
Note that the SSLCE in (3.2) is regarded as the weighted average of LCE with labeled data
(LCEL) and with unlabeled data (LCEU) as follows:

m̂SS(x) = γ

∑nL

i=1 YiKhL
(Xi − x)∑nL

i=1KhL
(Xi − x)

+ (1− γ)

∑n
j=nL+1 ŶjKhU

(Xj − x)∑n
j=nL+1KhU

(Xj − x)
(5.1)

= γLCEL+ (1− γ)LCEU,

where γ(x)(=
∑nL

i=1KhL
(Xi−x)/(

∑nL

i=1KhL
(Xi−x)+λ

∑n
j=nL+1KhU

(Xj−x)) is a weight-
ing factor to modulate the labeled and unlabeled data. In this paper we let γ(x) ≡ γ. For
simplicity, we can write m̂ss = (m̂ss(x1), · · · , m̂ss(xn))′ = Hy, with H = [γKL (1− γ)KU ],
y = (y1, · · · , yn)′ where KL = (KhL

(Xi − Xj)/
∑
j KhL

(Xi − Xj))n×nL
, i = 1, · · · , n,

j = 1, · · · , nL and KU = (KhU
(Xi − Xj)/

∑
j KhU

(Xi − Xj))n×nU
, i = 1, · · · , n, j =

nL+ 1, · · · , n. The parameters such as kernel parameters (hL, hU ) and weighting parameter
(γ) can be chosen through GCV function:

GCV (hL, hU , γ) =
n
∑n
i=1(Yi − m̂SS(Xi))

2

(n− trace(H))2
.

Since the choice of parameters is beyond of this research, it is sufficient to compare LCEL
with LCEU.
Example 5.1 To compare the performance of the LCEL with LCEU, we generated 100
data sets from the model Y = sin(2πX) + e, X ∼ U(0, 1) and e ∼ N(0, σ2). The sizes of
labeled data nL = 50, 100, 200, 500 and unlabeled data nU = 200, 500, 1000, 5000, 10000 were
used. The noise σ = 0.1, 0.2 was added to the model. To compare, we calculated the average
of mean squared error (AMSE) and standard deviation of mean squared error (SDMSE)
from the test data set of size 100.
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We summarized the results in Figure 5.1. The average (connecting real line) and stan-
dard deviation (connecting dotted line) of mean squared error of LCEL (stars) and LCEU
(circles) are presented in Figure 5.1 with σ = 0.1, 0.2, nL = 50, 100, 200, 500 and nU =
200, 500, 1000, 5000, 10000. The x-axis labels 1, · · · , 5 indicate 200, 500, 1000, 5000, 10000 re-
spectively. From Figure 5.1 we can determine that the LCEU has better performance than
that of the LCEL for all cases except where σ = 0.1, nL = 500 and nU > 500. This means
that we can always construct the SSLCE to behave better through the proper choice of γ.
For σ = 0.1 and nL = 100, any values of γ improve the SSLCE. In the case of σ = 0.1 and
nL = 500, the SSLCE is not worsened by choosing γ = 1.

Another important finding from Figure 5.1 was that a larger unlabeled data set is not
more helpful to the SSLCE. Therefore, even though the size of the available unlabeled data
is huge, we do not need to use all of it. When σ = 0.2 and nL = 50, the size of the unlabeled
data nU = 200 yields better performance than that of when nU = 10000 if the distributions
of unlabeled data and labeled data are identical.
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Figure 5.1 The average (connecting real line) and standard deviation (connecting dotted line)
of mean squared error of LCEL (stars) and LCEU (circles)
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6. Conclusions

In this paper, we derived an SSLCE from the LCE perspective for the univariate input
variable. The derived estimator is the same as the SSKR estimator proposed by Wang et al.
(2006). However we revealed the asymptotic properties of the SSLCE. From these asymptotic
properties, we knew that with a properly-chosen weighting factor we could obtain an SSLCE
that had a faster convergence rate than that of the LCE. From the numerical experiments
we also recommended using the proper size unlabeled data set, as larger sizes of unlabeled
data sets do not guarantee better performance for the SSLCE. We confirmed the proposed
assertion through numerical study. The study of semi-supervised regression based on local
polynomial regression and SSLCE with multivariate input variable will be considered in
future work.
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