• Title/Summary/Keyword: Supervised Data

Search Result 660, Processing Time 0.023 seconds

An Application of Spatial Classification Methods for the Improvement of Classification Accuracy (분류정확도 향상을 위한 공간적 분류방법의 적용)

  • Jeong, Jae-Joon;Lee, Byoung-Kil;Kim, Hyung-Tae;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.9 no.2 s.18
    • /
    • pp.37-46
    • /
    • 2001
  • Spectral pattern recognition techniques are most used in classification of remotely sensed data. Yet, in any real image, adjacent pixels are related, because imaging sensors acquire significant portions of energy from adjacent pixels. And, with the continued improvement in the spatial resolution of remote sensing systems, another spatial pattern recognition approach is must considered. In this study, we aim to show the potentiality of spatial classification methods through comparing the accuracies of spectral classification methods and those of spectral classification methods. By the comparisons between the two methods, classification accuracies of 6 different spatial classification methods are higher than that of spectral classification method by 2-6% or so. Additionally, we can show it statistically through the classification experiments with different band combinations.

  • PDF

Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier (퍼지신경망을 사용한 네이브 베이지안 분류기의 분산 그래프 학습)

  • Tian, Xue-Wei;Lim, Joon S.
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.409-414
    • /
    • 2013
  • Naive Bayesian classifiers are a powerful and well-known type of classifiers that can be easily induced from a dataset of sample cases. However, the strong conditional independence assumptions can sometimes lead to weak classification performance. Normally, naive Bayesian classifiers use Gaussian distributions to handle continuous attributes and to represent the likelihood of the features conditioned on the classes. The probability density of attributes, however, is not always well fitted by a Gaussian distribution. Another eminent type of classifier is the neuro-fuzzy classifier, which can learn fuzzy rules and fuzzy sets using supervised learning. Since there are specific structural similarities between a neuro-fuzzy classifier and a naive Bayesian classifier, the purpose of this study is to apply learning distribution graphs constructed by a neuro-fuzzy network to naive Bayesian classifiers. We compare the Gaussian distribution graphs with the fuzzy distribution graphs for the naive Bayesian classifier. We applied these two types of distribution graphs to classify leukemia and colon DNA microarray data sets. The results demonstrate that a naive Bayesian classifier with fuzzy distribution graphs is more reliable than that with Gaussian distribution graphs.

Automatic Meeting Summary System using Enhanced TextRank Algorithm (향상된 TextRank 알고리즘을 이용한 자동 회의록 생성 시스템)

  • Bae, Young-Jun;Jang, Ho-Taek;Hong, Tae-Won;Lee, Hae-Yeoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.467-474
    • /
    • 2018
  • To organize and document the contents of meetings and discussions is very important in various tasks. However, in the past, people had to manually organize the contents themselves. In this paper, we describe the development of a system that generates the meeting minutes automatically using the TextRank algorithm. The proposed system records all the utterances of the speaker in real time and calculates the similarity based on the appearance frequency of the sentences. Then, to create the meeting minutes, it extracts important words or phrases through a non-supervised learning algorithm for finding the relation between the sentences in the document data. Especially, we improved the performance by introducing the keyword weighting technique for the TextRank algorithm which reconfigured the PageRank algorithm to fit words and sentences.

A Channel Management Technique using Neural Networks in Wireless Networks (신경망를 이용한 무선망에서의 채널 관리 기법)

  • Ro Cheul-Woo;Kim Kyung-Min;Lee Kwang-Eui;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.115-119
    • /
    • 2006
  • The channel is one of the precious and limited resources in wireless networks. There are many researches on the channel management. Recently, the optimization problem of guard channels has been an important issue. In this paper, we propose an intelligent channel management technique based on the neural networks. An SRN channel alteration model is developed to generate the learning data for the neural networks and the performance analysis of system. In the proposed technique, the neural network is trained to generate optimal guard channel number g, using backpropagation supervised learning algorithm. The optimal g is computed using the neural network and compared to the g computed by the SRN model. The numerical results show that the difference between the value of g by backpropagation and that value by SRN model is ignorable.

  • PDF

Exercise Strategies for the Prevention and Treatment of Obesity in Children (아동 비만의 예방 및 치료를 위한 운동 전략)

  • Cho, Jin-Kyung;Han, Jin-Hee;Kang, Hyun-Sik;Yoon, Jin-Hwan
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.23 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • Childhood obesity has more than doubled in children and adolescents in the last decade. Obese youth are more likely to have risk factors for cardiovascular disease and type 2 diabetes such as high cholesterol, high blood pressure, insulin resistance, and metabolic syndrome. There is no single or simple solution to the childhood obesity epidemic, but to learn that obesity is closely related to lifestyle factors including poor fitness and physical inactivity as well as prolonged sitting time in conjunction with westernized dietary habits. In addition to a healthy and balanced diet, promotion of physical activity combined with carefully supervised resistance exercise training, and reduced screen time is a primary recommendation for the prevention and treatment of obesity in children and adolescents. This review provides evidence based data to support this multiple-step physical activity strategy as the most effective and preventive means against childhood obesity.

Assessing Spatial Uncertainty Distributions in Classification of Remote Sensing Imagery using Spatial Statistics (공간 통계를 이용한 원격탐사 화상 분류의 공간적 불확실성 분포 추정)

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.383-396
    • /
    • 2004
  • The application of spatial statistics to obtain the spatial uncertainty distributions in classification of remote sensing images is investigated in this paper. Two quantitative methods are presented for describing two kinds of uncertainty; one related to class assignment and the other related to the connection of reference samples. Three quantitative indices are addressed for the first category of uncertainty. Geostatistical simulation is applied both to integrate the exhaustive classification results with the sparse reference samples and to obtain the spatial uncertainty or accuracy distributions connected to those reference samples. To illustrate the proposed methods and to discuss the operational issues, the experiment was done on a multi-sensor remote sensing data set for supervised land-cover classification. As an experimental result, the two quantitative methods presented in this paper could provide additional information for interpreting and evaluating the classification results and more experiments should be carried out for verifying the presented methods.

Development of a New Munk-type Breaker Height Formula Using Machine Learning (머신러닝을 이용한 새로운 Munk-type 쇄파파고 예측식의 제안)

  • Choi, Byung-Jong;Nam, Hyung-Sik;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.165-172
    • /
    • 2021
  • Breaking wave is one of the important design factors in the design of coastal and port structures as they are directly related to various physical phenomena occurring on the coast, such as onshore currents, sediment transport, shock wave pressure, and energy dissipation. Due to the inherent complexity of the breaking wave, many empirical formulas have been proposed to predict breaker indices such as wave breaking height and breaking depth using hydraulic models. However, the existing empirical equations for breaker indices mainly were proposed via statistical analysis of experimental data under the assumption of a specific equation. In this study, a new Munk-type empirical equation was proposed to predict the height of breaking waves based on a representative linear supervised machine learning technique with high predictive performance in various research fields related to regression or classification challenges. Although the newly proposed breaker height formula was a simple polynomial equation, its predictive performance was comparable to that of the currently available empirical formula.

Usage of Waterbirds on the Artificial Floating Islands in Reservoir using UAV (무인항공기를 활용한 저수지 인공식물섬 조류 이용현황 분석)

  • Kim, Kyeong-Tae;Kim, Young;Kim, Hye-Joung;Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.57-67
    • /
    • 2019
  • Water-Birds are the birds that occupy the highest proportion in Korea, inland wetlands and reservoirs provide them with a good environment as habitat, but their habitats have been losing because of thoughtless development. Therefore, artificial plant islands in reservoirs are important for improving habitat environment and providing food resources. However, there are no research and standards on the built and management of artificial plant islands. So this study is to find out the density of bird using artificial plant island as habitat through monitoring using UAV focus on the Cheonho-reservoirs located in Seobuk-gu, Cheonan-si(Middle Chungcheong Province). Further, the correlation analysis with environmental factors was conducted to determine the effect of artificial plant islands as habitats for water-birds. The supervised classification of the three-time images taken by the drone identified 244 white-billed ducks and 46 mandarin ducks. The utilization rate was different for each photographed date, and more individuals were identified in wet artificial plant islands than dry ones. As a result of analyzing the utilization follow environmental factors, the distance from the trail showed a significant correlation, and the other factors did not have a statistically significant effect. This study is the first case of the UAV monitoring method of the water-birds using artificial plant islands in the reservoir, and can be used as the basic data for the built and management.

Accessing the Clustering of TNM Stages on Survival Analysis of Lung Cancer Patient (폐암환자 생존분석에 대한 TNM 병기 군집분석 평가)

  • Choi, Chulwoong;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.126-133
    • /
    • 2020
  • The treatment policy and prognosis are determined based on the final stage of lung cancer patients. The final stage of lung cancer patients is determined based on the T, N, and M stage classification table provided by the American Cancer Society (AJCC). However, the final stage of AJCC has limitations in its use for various fields such as patient treatment, prognosis and survival days prediction. In this paper, clustering algorithm which is one of non-supervised learning algorithms was assessed in order to check whether using only T, N, M stages with a data science method is effective for classifying the group of patients in the aspect of survival days. The final stage groups and T, N, M stage clustering groups of lung cancer patients were compared by using the cox proportional hazard model. It is confirmed that the accuracy of prediction of survival days with only T, N, M stages becomes higher than the accuracy with the final stages of patients. Especially, the accuracy of prediction of survival days with clustering of T, N, M stages improves when more or less clusters are analyzed than the seven clusters which is same to the number of final stage of AJCC.

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection (심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1542-1550
    • /
    • 2019
  • Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.