• Title/Summary/Keyword: Supervised Data

Search Result 659, Processing Time 0.025 seconds

Development of facility safety diagnosis system for offshore wind power using semi-supervised machine learning (준지도 학습 머신러닝을 이용한 해상 풍력용 설비안전 진단 시스템의 개발)

  • Woo-Jin Choi
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, a semi-supervised machine learning technique applied to actual field vibration data acquired from Jeju-do wind turbines for predictive diagnosis of abnormal conditions of offshore wind turbines is introduced. Semi-supervised machine learning, which combines un-supervised learning with supervised learning, can be used to perform anomaly detection in situations where sufficient fault data cannot be obtained. The signal processing results using the spectrogram of the original signal were shown, and external data were used to overcome the problem that disturbance reactions easily occurred due to the imbalance between the number of normal and abnormal data. Out of distribution (OOD), which uses external data, is a technology that is regarded as abnormal data that is unlikely to occur in reality, but we were able to use it by expanding it. By rearranging the distribution of data in this way, classification can be performed more robustly. Specifically, by observing the trends of the abnormal score and the change in the feature of the representation layer, continuous learning was performed through a mixture of existing and new data.

A Clustering-based Semi-Supervised Learning through Initial Prediction of Unlabeled Data (미분류 데이터의 초기예측을 통한 군집기반의 부분지도 학습방법)

  • Kim, Eung-Ku;Jun, Chi-Hyuck
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.93-105
    • /
    • 2008
  • Semi-supervised learning uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance, whereas unsupervised learning analyzes only unlabeled data for clustering purpose. We propose a new clustering-based semi-supervised learning method by reflecting the initial predicted labels of unlabeled data on the objective function. The initial prediction should be done in terms of a discrete probability distribution through a classification method using labeled data. As a result, clusters are formed and labels of unlabeled data are predicted according to the Information of labeled data in the same cluster. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

Software Fault Prediction using Semi-supervised Learning Methods (세미감독형 학습 기법을 사용한 소프트웨어 결함 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • Most studies of software fault prediction have been about supervised learning models that use only labeled training data. Although supervised learning usually shows high prediction performance, most development groups do not have sufficient labeled data. Unsupervised learning models that use only unlabeled data for training are difficult to build and show poor performance. Semi-supervised learning models that use both labeled data and unlabeled data can solve these problems. Self-training technique requires the fewest assumptions and constraints among semi-supervised techniques. In this paper, we implemented several models using self-training algorithms and evaluated them using Accuracy and AUC. As a result, YATSI showed the best performance.

Performance Comparison Analysis of AI Supervised Learning Methods of Tensorflow and Scikit-Learn in the Writing Digit Data (필기숫자 데이터에 대한 텐서플로우와 사이킷런의 인공지능 지도학습 방식의 성능비교 분석)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.701-706
    • /
    • 2019
  • The advent of the AI(: Artificial Intelligence) has applied to many industrial and general applications have havingact on our lives these days. Various types of machine learning methods are supported in this field. The supervised learning method of the machine learning has features and targets as an input in the learning process. There are many supervised learning methods as well and their performance varies depends on the characteristics and states of the big data type as an input data. Therefore, in this paper, in order to compare the performance of the various supervised learning method with a specific big data set, the supervised learning methods supported in the Tensorflow and the Sckit-Learn are simulated and analyzed in the Jupyter Notebook environment with python.

Pretext Task Analysis for Self-Supervised Learning Application of Medical Data (의료 데이터의 자기지도학습 적용을 위한 pretext task 분석)

  • Kong, Heesan;Park, Jaehun;Kim, Kwangsu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.38-40
    • /
    • 2021
  • Medical domain has a massive number of data records without the response value. Self-supervised learning is a suitable method for medical data since it learns pretext-task and supervision, which the model can understand the semantic representation of data without response values. However, since self-supervised learning performance depends on the expression learned by the pretext-task, it is necessary to define an appropriate Pretext-task with data feature consideration. In this paper, to actively exploit the unlabeled medical data into artificial intelligence research, experimentally find pretext-tasks that suitable for the medical data and analyze the result. We use the x-ray image dataset which is effectively utilizable for the medical domain.

  • PDF

Supervised Learning-Based Collaborative Filtering Using Market Basket Data for the Cold-Start Problem

  • Hwang, Wook-Yeon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.421-431
    • /
    • 2014
  • The market basket data in the form of a binary user-item matrix or a binary item-user matrix can be modelled as a binary classification problem. The binary logistic regression approach tackles the binary classification problem, where principal components are predictor variables. If users or items are sparse in the training data, the binary classification problem can be considered as a cold-start problem. The binary logistic regression approach may not function appropriately if the principal components are inefficient for the cold-start problem. Assuming that the market basket data can also be considered as a special regression problem whose response is either 0 or 1, we propose three supervised learning approaches: random forest regression, random forest classification, and elastic net to tackle the cold-start problem, comparing the performance in a variety of experimental settings. The experimental results show that the proposed supervised learning approaches outperform the conventional approaches.

Semi-supervised classification with LS-SVM formulation (최소제곱 서포터벡터기계 형태의 준지도분류)

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.461-470
    • /
    • 2010
  • Semi supervised classification which is a method using labeled and unlabeled data has considerable attention in recent years. Among various methods the graph based manifold regularization is proved to be an attractive method. Least squares support vector machine is gaining a lot of popularities in analyzing nonlinear data. We propose a semi supervised classification algorithm using the least squares support vector machines. The proposed algorithm is based on the manifold regularization. In this paper we show that the proposed method can use unlabeled data efficiently.

Active Selection of Label Data for Semi-Supervised Learning Algorithm (준감독 학습 알고리즘을 위한 능동적 레이블 데이터 선택)

  • Han, Ji-Ho;Park, Eun-Ae;Park, Dong-Chul;Lee, Yunsik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • The choice of labeled data in semi-supervised learning algorithm can result in effects on the performance of the resultant classifier. In order to select labeled data required for the training of a semi-supervised learning algorithm, VCNN(Vector Centroid Neural Network) is proposed in this paper. The proposed selection method of label data is evaluated on UCI dataset and caltech dataset. Experiments and results show that the proposed selection method outperforms conventional methods in terms of classification accuracy and minimum error rate.

Semi-supervised Multi-view Manifold Discriminant Intact Space Learning

  • Han, Lu;Wu, Fei;Jing, Xiao-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4317-4335
    • /
    • 2018
  • Semi-supervised multi-view latent space learning is gaining considerable popularity recently in many machine learning applications due to the high cost and difficulty to obtain the large amount of label information of data. Although some semi-supervised multi-view latent space learning methods have been presented, there is still much space for improvement: 1) How to learn latent discriminant intact feature representations by employing data of multiple views; 2) How to exploit the manifold structure of both labeled and unlabeled point in the learned latent intact space effectively. To address the above issues, we propose an approach called semi-supervised multi-view manifold discriminant intact space learning ($SM^2DIS$) for image classification in this paper. $SM^2DIS$ aims to seek a manifold discriminant intact space for data of different views by making use of both the discriminant information of labeled data and the manifold structure of both labeled and unlabeled data. Experimental results on MNIST, COIL-20, Multi-PIE, and Caltech-101 databases demonstrate the effectiveness and robustness of our proposed approach.

Semi-supervised Model for Fault Prediction using Tree Methods (트리 기법을 사용하는 세미감독형 결함 예측 모델)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.107-113
    • /
    • 2020
  • A number of studies have been conducted on predicting software faults, but most of them have been supervised models using labeled data as training data. Very few studies have been conducted on unsupervised models using only unlabeled data or semi-supervised models using enough unlabeled data and few labeled data. In this paper, we produced new semi-supervised models using tree algorithms in the self-training technique. As a result of the model performance evaluation experiment, the newly created tree models performed better than the existing models, and CollectiveWoods, in particular, outperformed other models. In addition, it showed very stable performance even in the case with very few labeled data.