• 제목/요약/키워드: Supertall

검색결과 45건 처리시간 0.024초

Double-Cage 건설용 리프트의 양중시간 산정을 위한 시뮬레이션 모델 개발 (The Development of Simulation Model for Calculating Hoisting Time of Double-Cage Construction Lift in Supertall Building Construction)

  • 김완섭;이동민;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.64-65
    • /
    • 2016
  • According to the recent increase in the height of supertall buildings, construction lift became one of most important equipment for vertical transportation of resources. However, increase in lifting load during peak time in which the resources are concentrated often causes a risk of construction delay. This study suggests a concept of Double-Cage construction lift, which is a lift with two cages attached together allowing transportation of resources on two consecutive work floors simultaneously. The aim of this study is to present a simulation model suitable for calculating hoisting time of Double-Cage construction lift. The proposed model is expected to be utilized when applying Double-cage construction lift for its efficient operation and management.

  • PDF

The Mixed-Use Supertall and the Hybridization of Program

  • Bagley, Forth
    • 국제초고층학회논문집
    • /
    • 제7권1호
    • /
    • pp.65-73
    • /
    • 2018
  • Increasingly, mixed-use, multi-program complexes are emerging as the standard development model around the world. As their prominence grows, these projects are becoming increasingly complex. Program adjacencies are ever more intertwined as developers (and the architects who support them) are becoming more comfortable blurring the traditional boundaries between office, retail, residential and hospitality. This article discusses a second generation of mixed-use projects that embrace this hybridization, honing in on supertall architecture, their hybrid program offerings, and innovative sky lobbies. It concludes that programmatic advancements will continue to expand and find integration within single structures, both repositioned and built from the ground up.

Key Trends in Supertall Buildings - A Review of the World's 100 Tallest Buildings in the Last 30 Years

  • Shasha Wang;Daniel Safarik;Zhendong Wang
    • 국제초고층학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The last 30 years have seen a rapid growth in the number of supertall buildings across the world, with newly completed buildings continuing to rank among the tallest 100 every year. Chinese projects notably play a pivotal role in these constant updates. It is caused by the interweaving of population and urbanization, economic considerations, and further, a series of accompanying urban problems. This paper focuses on the world's 100 tallest buildings in the last 30 years, and compares this collection of projects across five years via the dimensions of height, distribution, function and structural material. The intention is to discuss and interpret the influence factors and developing trends, some of which have been apparent over a dozen years, while others are just beginning to take shape, thus to provide an opportunity to preview the types of supertall buildings in the future.

Energy Modeling of a Supertall Building Using Simulated 600 m Weather File Data

  • Irani, Ali;Leung, Luke;Sedino, Marzia
    • 국제초고층학회논문집
    • /
    • 제8권2호
    • /
    • pp.101-106
    • /
    • 2019
  • Assessing the energy performance of supertall buildings often does not consider variations in energy consumption due to the change of environmental conditions such as temperature, pressure, and wind speed associated with differing elevations. Some modelers account for these changing conditions by using a conventional temperature lapse rate, but not many studies confirm to the appropriateness of applying it to tall buildings. This paper presents and discusses simulated annual energy consumption results from a 600 m tall skyscraper floor plate located in Dubai, UAE, assessed using ground level weather data, a conventional temperature lapse rate of $6.5^{\circ}C/km$, and more accurate simulated 600 m weather data. A typical office floorplate, with ASHRAE 90.1-2010 standards and systems applied, was evaluated using the EnergyPlus engine through the OpenStudio graphical user interface. The results presented in this paper indicate that by using ground level weather data, energy consumption at the top of the building can be overestimated by upwards of 4%. Furthermore, by only using a lapse rate, heating energy is overestimated by up to 96% due to local weather phenomenon such as temperature inversion, which can only be conveyed using simulated weather data. In addition, sizing and energy consumption of fans, which are dependent both on wind and atmospheric pressure, are not accurately captured using a temperature lapse rate. These results show that that it is important, with the ever increasing construction of supertall buildings, to be able to account for variations in climatic conditions along the height of the building. Adequately modeling these conditions using simulated weather data will help designers and engineers correctly size mechanical systems, potentially decreasing overall building energy consumption, and ensuring that these systems are able to provide the necessary indoor conditions to maintain occupant comfort levels.

The ASHRAE Design Guide for Tall, Supertall and Megatall Building Systems

  • Simmonds, Peter
    • 국제초고층학회논문집
    • /
    • 제4권4호
    • /
    • pp.311-318
    • /
    • 2015
  • The ASHRAE Design Guide for Tall, Supertall and Megatall Building Systems was produced in collaboration with the CTBUH. The design guide outlines various tall building mechanical systems that are presently being designed or are planned for the future. Tall commercial buildings in particular present a series of design problems that set them apart from other functions. The Design Guide will be of interest to owners, architects, structural engineers, mechanical engineers, electrical engineers and other specialized engineers and consultants. This design guide addresses design issues for tall commercial buildings, which are very often mixed-use, and commonly consist of low level retail, office floors, residential units, and hotel uses.

Performance of Seismic Protective Systems for Super-Tall Buildings and Their Contents

  • Kasai, Kazuhiko
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.155-165
    • /
    • 2016
  • A much higher level of seismic performance is needed for supertall buildings due to increased demands for their functional continuities and the recognized needs for their continuing emergence in metropolitan areas. This paper analyzes, compares, and contrasts responses recorded during the 2011 Tohoku-oki Earthquake of different supertall buildings featuring conventional and vibration-controlled engineering systems. The superior performance and advantage of the latter are pointed out, and the typical dynamic properties, response characteristics, and effects on the secondary system are discussed. Ongoing efforts to enhance vibration control performance are described, covering the development of specifications, use of performance curves and targeted displacement design, and methods to find appropriate locations of damper installation resulting in a minimized amount of dampers.

W350 - The Roadmap Of Super High-Rise Timber Building -

  • Harada, Hiroaki;Fukushima, Takashi;Hatori, Tatsuya;Aoyagi, Hajime
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.255-260
    • /
    • 2020
  • This research and technology development project is based on the concept and plan of Sumitomo Forestry Co., Ltd., and designed by Nikken Sekkei Ltd., and is aiming to realize 350 m supertall timber-framed buildings in urban areas by 2041, the 350 year anniversary of Sumitomo Forestry's founding(Fig. 1). By constructing office-based multi-use buildings which have 70 stories above ground with GFA of 455,000 ㎡, using a huge amount of timber of 185,000 ㎥, this project envisions to connect forests and cities, and to solve the problems in both of forests and cities. At the present stage, the main objective is to identify the issues related to wood, such as building structural systems, construction methods, materials used, and resource development, and to create a roadmap for future technologies to be researched and developed.

The Environmental Impact of Tall vs Small: A Comparative Study

  • Drew, Christopher;Nova, Katrina Fernandez;Fanning, Keara
    • 국제초고층학회논문집
    • /
    • 제4권2호
    • /
    • pp.109-116
    • /
    • 2015
  • The concept of vertical living has been hailed as a solution to control fast growth and urbanization of cities worldwide. As super tall residential projects become more common and sustainability considerations become more necessary, their efficiency has been called into question. How do vertical residential developments compare with suburban homes? What are the environmental advantages and disadvantages of vertical communities? Is there a middle ground? We present the results from an AS+GG study that compares the environmental performance of different housing typologies ranging from a 215 supertall building to single family residences, including several scales in between. Our samples comprise 2,000 residential units per type and include the infrastructure needed to support them. We analyzed land use, energy use, and lifecycle carbon emissions for each typology. The results show that different typologies perform better depending on the parameter being assessed. We discuss these findings; assess overall performance, and present conclusions.

Superframed Conjoined Towers for Sustainable Megatall Buildings

  • Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.179-191
    • /
    • 2021
  • Tall buildings have generally been developed as solo towers. With the increase of the heights of tall buildings from about 10-story buildings to supertall and megatall buildings, their structural systems have evolved from interior structures to exterior structures and combined/mixed systems. This paper reviews structural systems developed for solo supertall and megatall buildings and discusses the challenges they face in terms of structural performance and architectural design as the building heights are ever increased. As a viable and more sustainable design alternative to extremely tall solo towers, superframed conjoined towers are presented. Their structural performances are investigated in comparison with solo tower structures. Further, architectural potentials of superframed conjoined towers are explored through design studies.