• Title/Summary/Keyword: Superstructure optimization

Search Result 24, Processing Time 0.023 seconds

A Study on the Superstructure Optimization of LNG Liquefaction Process (LNG 액화공정 초구조 모델 최적화 연구)

  • Son, Heechang;Lim, Youngsub
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Because the expenditure of LNG liquefaction processes are high in a LNG project, it is very important to find a suitable liquefaction process model and optimal operating conditions for a project. Various configurations of LNG liquefaction processes have been suggested, and therefore it takes a lot of time and manpower to compare all of these models in order to select an appropriate liquefaction process for a project. A superstructure model can include multiple options in one model and can contribute to decide the best configuration and operating conditions at the same time. This study developed a superstructure model including multiple process options for SMR (Single Mixed Refrigerant) liquefaction process and optimized it. The results showed that the optimization results of the superstructure model have similar values with optimization results of the separate SMR model.

Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm

  • Ghiamat, R.;Madhkhan, M.;Bakhshpoori, T.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.503-512
    • /
    • 2019
  • The construction of segmental precast concrete bridge is an increase due to its superior performance and economic advantages. This type of bridge is appropriate for spans within 30 to 150 m (100 to 500 ft), known as mega-projects and the design optimization would lead to considerable economic benefits. A box-girder cross section superstructure of balanced cantilever construction method is assessed here. The depth of cross section, (variable along the span linearly), bottom flange thickness, and the count of strands are considered as design variables. The optimum design is characterized by geometry, serviceability, ductility, and ultimate limit states specified by AASHTO. Genetic algorithm (GA) is applied in two fronts: as to the saving in construction cost 8% and as to concrete volume 6%. The sensitivity analysis is run by considering different parameters like span/depth ratio, relation between superstructure cost, span length and concrete compressive strength.

SSI effects on seismic behavior of smart base-isolated structures

  • Shourestani, Saeed;Soltani, Fazlollah;Ghasemi, Mojtaba;Etedali, Sadegh
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.161-174
    • /
    • 2018
  • The present study investigates the soil-structure interaction (SSI) effects on the seismic performance of smart base-isolated structures. The adopted control algorithm for tuning the control force plays a key role in successful implementation of such structures; however, in most studied carried out in the literature, these algorithms are designed without considering the SSI effect. Considering the SSI effects, a linear quadratic regulator (LQR) controller is employed to seismic control of a smart base-isolated structure. A particle swarm optimization (PSO) algorithm is used to tune the gain matrix of the controller in both cases without and with SSI effects. In order to conduct a parametric study, three types of soil, three well-known earthquakes and a vast range of period of the superstructure are considered for assessment the SSI effects on seismic control process of the smart-base isolated structure. The adopted controller is able to make a significant reduction in base displacement. However, any attempt to decrease the maximum base displacement results in slight increasing in superstructure accelerations. The maximum and RMS base displacements of the smart base-isolated structures in the case of considering SSI effects are more than the corresponding responses in the case of ignoring SSI effects. Overall, it is also observed that the maximum and RMS base displacements of the structure are increased by increasing the natural period of the superstructure. Furthermore, it can be concluded that the maximum and RMS superstructure accelerations are significant influenced by the frequency content of earthquake excitations and the natural frequency of the superstructure. The results show that the design of the controller is very influenced by the SSI effects. In addition, the simulation results demonstrate that the ignoring the SSI effect provides an unfavorable control system, which may lead to decline in the seismic performance of the smart-base isolated structure including the SSI effects.

Life Cycle Cost Optimization Considering Maintenance History of Bridge Beck and Girders (바닥판과 주형의 유지보수 이력을 고려한 LCC 최적설계)

  • Ahn Ye-Jun;Lee Hyun-Sub;Shin Yung-Seok;Park Jang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.719-726
    • /
    • 2005
  • The optimal design was performed for the bridge superstructure composed of steel box girders and concrete deck considering life cycle cost. The service life of the superstructure was estimated, after load carry capacity curves for steel girder and concrete deck were derived on the basis of condition grade curves and maintenance histories. The object function was determined as life cycle cost, including initial cost, total maintenance cost, disposal cost and user cost, for a period of the estimated service life. The optimal design of the superstructure was performed for the various service lifes. The annual costs were used to compare calculated results and to get the most economical design. Also this paper presents reasonable idea for the use of user cost with uncertainty.

  • PDF

Reasonable Optimum Design of Agricultural Reinforced Concrete Structure - Superstructures of Aqueduct - (농업용 철근콘크리트 구조물의 합리적인 최적설계 -수로교 상부구조물-)

  • Kim, Jong-Ok;Park, Chan-Gi;Cha, Sang-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • This study was conducted to find out the reasonable optimum design method of agricultural reinforced concrete structures. Selected design variables are the dimension of concrete section, reinforced steel area, and objective function is formulated by cost function. To test the reliability, efficiency, possibility of application and reasonability of optimum design method, both continuous optimization method and mixed-discrete optimization method were applied to the design of reinforced concrete superstructure of aqueduct and application results were discussed. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of reinforced concrete agricultural structures.

Optimization of a composite beam for high-speed railroads

  • Poliakov, Vladimir Y.;Saurin, Vasyli V.
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.493-501
    • /
    • 2020
  • The paper describes an optimization method based on the mathematical model of interaction within multibody 'bridge-track-cars" dynamic system. The interaction is connected with considerable dynamic phenomena influenced by high traffic speed (up to 400 km/h) on high-speed railroads. The trend analysis of a structure is necessary to determine the direction and resource of optimizing the system. Thus, scientific methods of decision-making process are necessary. The process requires a great amount of information analysis dealing with behavior and changes of the "bridge-track-cars system" that consists of mechanisms and structures, including transitions. The paper shows the algorithm of multi-criteria optimization that can essentially reduce weight of a bridge superstructure using big data analysis. This reduction is carried out in accordance with the constraints that have to be satisfied in any case. Optimization of real steel-concrete beam is exemplified. It demonstrates possibility of measures that are offered by the algorithm.

Optimal Design of Tall Residential Building with RC Shear Wall and with Rectangular Layout

  • Jinjie, Men;Qingxuan, Shi;Zhijian, He
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The objective of optimization is to present a design process that minimizes the total material consumption while satisfying current codes and specifications. In the research an optimization formulation for RC shear wall structures is proposed. And based on conceptual design methodology, an optimization process is investigated. Then optimal design techniques and specific explanations are introduced for residential buildings with shear wall structure, especially for that with a rectangular layout. An example of 30-story building is presented to illustrate the effectiveness of the proposed optimal design process. Furthermore, the influence of aspect ratio on the concrete consumption and the steel consumption of the superstructure are analyzed for this typical RC shear wall structure; and their relations are obtained by regressive analysis. Finally, the optimal material consumption is suggested for the residential building with RC shear wall structure and with rectangular layout. The relation and the data suggested can be used for guiding the design of similar RC shear wall structures.

Automatic Synthesis of Chemical Processes by a State Space Approach (상태공간 접근법에 의한 화학공정의 자동합성)

  • 최수형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.832-835
    • /
    • 2003
  • The objective of this study is to investigate the possibility of chemical process synthesis purely based on mathematical programming when given an objective, feed conditions, product specifications, and model equations for available process units. A method based on a state space approach is proposed, and applied to an example problem with a reactor, a heat exchanger, and a separator. The results indicate that a computer can automatically synthesize an optimal process without any heuristics or expertise in process design provided that global optimization techniques are improved to be suitable for large problems.

A State Space Modeling and Evolutionary Programming Approach to Automatic Synthesis of Chemical Processes

  • Choi, Soo-Hyoung;Lee, Bom-Sock;Chung, Chang-Bock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1870-1873
    • /
    • 2004
  • The objective of this study is to investigate the possibility of chemical process synthesis purely based on mathematical programming when given an objective, feed conditions, product specifications, and model equations for available process units. A method based on a state space approach is proposed, and applied to an example problem with a reactor, a heat exchanger, and a separator. The results indicate that a computer can automatically synthesize an optimal process without any heuristics or expertise in process design provided that global optimization techniques are improved to be suitable for large problems.

  • PDF

Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations

  • Hadidi, Ali;Azar, Bahman Farahmand;Rafiee, Amin
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.701-721
    • /
    • 2016
  • Base isolation is a well-established passive strategy for seismic response control of buildings. In this paper, an efficient framework is proposed for reliability-based design optimization (RBDO) of isolated buildings subjected to uncertain earthquakes. The framework uses reduced function evaluations method, as an efficient tool for structural reliability analysis, and an efficient optimization algorithm for optimal structural design. The probability of failure is calculated considering excessive base displacement, superstructure inter-storey drifts, member stress ratios and absolute accelerations of floors of the isolated building as failure events. The behavior of rubber bearing isolators is modeled using nonlinear hysteretic model and the variability of future earthquakes is modeled by applying a probabilistic approach. The effects of pulse component of stochastic near-fault ground motions, fixity-factor of semi-rigid beam-to-column connections, values of isolator parameters, earthquake magnitude and epicentral distance on the performance and safety of semi-rigidly connected base-isolated steel framed buildings are studied. Suitable RBDO examples are solved to illustrate the results of investigations.