DOI QR코드

DOI QR Code

LNG 액화공정 초구조 모델 최적화 연구

A Study on the Superstructure Optimization of LNG Liquefaction Process

  • 손희창 (서울대학교 조선해양공학과) ;
  • 임영섭 (서울대학교 해양시스템공학연구소)
  • Son, Heechang (Dept. of Naval Architecture and Ocean Eng., Seoul National Univ.) ;
  • Lim, Youngsub (Research Institute of Marine Systems Eng., Seoul National Univ.)
  • 투고 : 2019.10.04
  • 심사 : 2020.01.07
  • 발행 : 2020.02.28

초록

LNG사업에서 액화공정의 운전비용은 큰 비중을 차지하기 때문에 적합한 액화공정을 선정하고 그 운전조건을 결정하는 것은 중요한 일이다. 현재까지 다양한 구성의 액화공정들이 개발되어 왔기 때문에 이들을 최적화하고 비교하여 최적의 액화공정을 선택하는 것은 많은 시간과 노력을 요하는 일이다. 다양한 구조 및 선택 사항을 포함한 초구조 모델을 사용한 초구조 최적화를 수행하면 공정 구성에 대한 선택과 최적의 운전변수를 한 번에 최적화하는 것이 가능하다. 본 연구에서는 SMR 액화공정에 대한 다양한 선택지를 포함하는 초구조 모델을 만들고 이를 최적화하였다. 결과적으로 초구조 모델이 개별적인 액화공정에 준하는 최적 포인트를 도출하는 것을 확인하였다.

Because the expenditure of LNG liquefaction processes are high in a LNG project, it is very important to find a suitable liquefaction process model and optimal operating conditions for a project. Various configurations of LNG liquefaction processes have been suggested, and therefore it takes a lot of time and manpower to compare all of these models in order to select an appropriate liquefaction process for a project. A superstructure model can include multiple options in one model and can contribute to decide the best configuration and operating conditions at the same time. This study developed a superstructure model including multiple process options for SMR (Single Mixed Refrigerant) liquefaction process and optimized it. The results showed that the optimization results of the superstructure model have similar values with optimization results of the separate SMR model.

키워드

참고문헌

  1. BP, "BP Energy Outlook Energy 2017", BP Stat. Rev. World Energy 52, (2017)
  2. Lee, S. and Chang D., "Design of Pile-Guide Mooring System for Offshore LNG Bunkering Terminal: A Case Study for Singapore Port", J. of Ocean Eng. and Technol., 31(6), 379-387, (2017) https://doi.org/10.26748/KSOE.2017.12.31.6.379
  3. Hwang, C. and Lim, Y., "Optimal process design of onboard BOG re-liquefaction system for LNG carrier", J. Ocean Eng. Technol., 32(5), 372-379, (2018) https://doi.org/10.26748/KSOE.2018.6.32.5.372
  4. Shukri, T., "LNG technology selection", Hydrocarbon Engineering, 9(2), (2004)
  5. Foerg, W., Bach, W. and Stockmann, R., "A New LNG Baseload Process and the Manufacturing of the Main Heat Exchangers", Linde AG - Stat oil, (2003)
  6. Vatani, A., Mehrpooya, M. and Palizdar, A., "Advanced exergetic analysis of five natural gas liquefaction processes", Energy Conversion and Management, 78, 720-737, (2014) https://doi.org/10.1016/j.enconman.2013.11.050
  7. G. C. Lee, R. Smith, and X. X. Zhu, "Optimal synthesis of mixed-refrigerant systems for low-temperature processes", Ind. Eng. Chem. Res., 41(20), 5016-5028, (2002) https://doi.org/10.1021/ie020057p
  8. A. Alabdulkarem, A. Mortazavi, Y. Hwang, R. Radermacher, and P. Rogers, "Optimization of propane pre-cooled mixed refrigerant LNG plant", Applied Thermal Engineering, 31(6-7), 1091-1098, (2011) https://doi.org/10.1016/j.applthermaleng.2010.12.003
  9. P. Moein, M. Sarmad, H. Ebrahimi, M. Zare, S. Pakseresht, and S. Z. Vakili, "APCI-LNG single mixed refrigerant process for natural gas liquefaction cycle: analysis and optimization", Journal of Natural Gas Science and Engineering, 26, 470-479, (2015) https://doi.org/10.1016/j.jngse.2015.06.040
  10. W. Ali, M.A. Qyyum, K. Qadeer, and M. Lee, "Energy optimization for single mixed refrigerant natural gas liquefaction process using the metaheuristic vortex search algorithm", Applied Thermal Engineering, 129, 782-791, (2018) https://doi.org/10.1016/j.applthermaleng.2017.10.078
  11. X. Xu, J. Liu, and L. Cao, "Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process", Cryogenic, 59, 60-69, (2014) https://doi.org/10.1016/j.cryogenics.2013.11.001
  12. WorleyParsons, CCS learning from the LNG sector - A report for the GCCSI, (2013)
  13. W. You, M. Chae, J. Park, and Y. Lim, "Potential Explosion Risk Comparison between SMR and DMR Liquefaction Processes at Conceptual Design Stage of FLNG". J. of Ocean Eng. and Technol., 32(2), 95-105, (2018) https://doi.org/10.26748/KSOE.2018.4.32.2.095
  14. Pwaga, S.S., "Sensitivity Analysis of Proposed LNG liquefaction Processes for LNG FPSO", NTNU, Natural Gas Technology, (2011)
  15. Lee, I., and Moon, I., "Strategies for process and size selection of natural gas liquefaction processes: specific profit portfolio approach by economic based optimization", Industrial & Engineering Chemistry Research, 57(17), 5845-5857, (2017)
  16. Primabudi, E., Morosuk, T., Tsatsaronis, G., "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process", Energy, 185, 492-504, (2019) https://doi.org/10.1016/j.energy.2019.07.035
  17. Song, R., Cui, M., and Liu, J., "Single and multiple objective optimization of a natural gas liquefaction process" Energy, 124, 19-28, (2017) https://doi.org/10.1016/j.energy.2017.02.073
  18. Gen, M. and Cheng, R., Genetic algorithms and engineering optimization, pp 136, (2000)
  19. Na, J., Lim, Y. and Han, C., "A modified DIRECT algorithm for hidden constraints in an LNG process optimization", Energy, 126, 488-500, (2017) https://doi.org/10.1016/j.energy.2017.03.047
  20. Jones, D.R., "DIRECT global optimization algorithm", Encyclopedia of optimization, 431-440, (2001)
  21. Zielinski, K., Peters, D., and Laur, R., "Stopping criteria for single-objective optimization", in Proceedings of the Third International Conference on Computational Intelligence, Robotics and Autonomous Systems, (2005)
  22. Xu, X., Liu, J., and Cao, L., "Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process", Cryogenics, 59, 60-69, (2014) https://doi.org/10.1016/j.cryogenics.2013.11.001
  23. Remeljej, C.W. and Hoadley, A.F.A., "An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes", Energy, 31(12), 2005-2019, (2006) https://doi.org/10.1016/j.energy.2005.09.005
  24. G. Venkatarathnam and K.D. Timmerhaus, "Natural gas liquefaction processes", in Cryogenic Mixed Refrigerant Processes, 3rd ed., New York, NY: Springer Sicence+Business Media, LLC, 89-128, (2008)
  25. Roberts, M.J., Agrawal, R. and Daugherty, T.L., "Single mixed refrigerant gas liquefaction process", U.S. patent No. 6,347,531, (2002)