• 제목/요약/키워드: Superstructure

검색결과 609건 처리시간 0.026초

Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings

  • Chun, Young-Soo;Hur, Moo-Won
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.439-451
    • /
    • 2015
  • This study analyzed the isolation effect for a 15-story reinforced concrete (RC) building with regard to changes in the beam-column stiffness ratio and the difference in the vibration period between the superstructure and an isolation layer in order to provide basic data that are needed to devise a framework for the design of isolated RC buildings. First, this analytical study proposes to design RC building frames by securing an isolation period that is at least 2.5 times longer than the natural vibration period of a superstructure and configuring a target isolation period that is 3.0 s or longer. To verify the proposed plan, shaking table tests were conducted on a scaled-down model of 15-story RC building installed with laminated rubber bearings. The experimental results indicate that the tested isolated structure, which complied with the proposed conditions, exhibited an almost constant response distribution, verifying that the behavior of the structure improved in terms of usability. The RC building's response to inter-story drift (which causes structural damage) was reduced by about one-third that of a non-isolated structure, thereby confirming that the safety of such a superstructure can be achieved through the building's improved seismic performance.

초대형 부유식 구조물의 상부구조체에 대한 동적응답해석 (Dynamic Response Analysis of Superstructures on Very Large Floating Structures)

  • 곽명하;송화철
    • 한국항해항만학회지
    • /
    • 제26권4호
    • /
    • pp.441-447
    • /
    • 2002
  • 전세계적인 인구증가와 산업화로 인하여 육지면적의 부족, 육상자원의 고갈 등의 문제로 해양의 이용 및 개발의 관심이 늘어나고 있으며, 환경친화적인 해양공간을 확보하기 위하여 초대형 부유식 해상구조물에 대한 기술개발이 요구되고 있다. 본 논문에서는 초대형 부유식 구조물의 상부구조물에 대한 시간이력해석법에 대하여 소개하고 파랑하중에 의한 부체변형을 이용한 시간변위이력 산정 방법을 제안한다. 또한 주기 및 진폭의 변화에 따른 상부구조물의 동적 시간이력응답 결과를 분석하고 초대형 부유식 상부구조물 시설계안의 동적구조안전성을 평가한다.

중.저층골조에서 면진주기 설정에 따른 면진효과 (Seismic Isolation Effects According to Set up the Isolation Period in the Medium and Low-rise Framed Building)

  • 천영수;허무원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.93-99
    • /
    • 2010
  • 본 논문에서는 상부구조에 있어서 보-기둥 강성비 변화에 따른 골조의 특성과 상부구조와 면진층 간의 진동주기비에 따른 면진효과를 분석해 보고, 상부골조의 주기와 목표 면진주기의 설정에 따라 면진효과가 어떻게 달라지는가에 대한 정보를 제공하여 향후 면진건물을 설계하기 위한 기본계획을 세우는데 있어서 필요한 기초 자료를 제공하고자 한다. 그 결과 건물골조의 경우 유효한 면진효과를 얻기 위해서는 최소한 상부구조의 고유진동주기 대비 2.5배 이상의 면진주기를 확보하고, 목표 면진주기를 2.0초 이상으로 설정하여 설계할 것을 추천한다.

밀도범함수를 이용한 정방정계-NiSi (010)/Si 계면 층의 구조 연구 (Structural Study of Interface Layers in Tetragonal-NiSi (010)/Si using Density Functional Theory)

  • 김대희;김대현;서화일;김영철
    • 한국전기전자재료학회논문지
    • /
    • 제22권5호
    • /
    • pp.377-381
    • /
    • 2009
  • Tetragonal-NiSi (010)/Si superstructures were calculated for studying the interface structure using density functional theory, The orthorhombic-NiSi was changed to the tetragonal-NiSi to be matched with the Si surface for epitaxy interface. The eight interface models were produced by the type of the Si surfaces, The tetragonal-NiSi (010)/Si (020)[00-1] superstructure was energetically the most favorable, and the interface thickness of this superstructure was the shortest among the tetragonal-NiSi (010)/Si superstructures. However, in the case of tetragonal-NiSi (010)/Si (010)[00-1] superstructure, it was energetically the most unfavorable, and the interface thickness was the longest. The energies and interface thicknesses of tetragonal-NiSi (010)/Si superstructures were influenced by the coordination number of Ni atoms and the bond length between atoms located at the interface.

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

Seismic response of bridge pier supported on rocking shallow foundation

  • Deviprasad, B.S.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • 제21권1호
    • /
    • pp.73-84
    • /
    • 2020
  • In the seismic design of bridges, formation of plastic hinges plays an important role in the dissipation of seismic energy. In the case of conventional fixed-base bridges, the plastic hinges are allowed to form in the superstructure alone. During seismic event, such bridges may be safe from collapse but the superstructure undergoes significant plastic deformations. As an alternative design approach, the plastic hinges are guided to form in the soil thereby utilizing the inevitable yielding of the soil. Rocking foundations work on this concept. The formation of plastic hinges in the soil reduces the load and displacement demands on the superstructure. This study aims at evaluating the seismic response of bridge pier supported on rocking shallow foundation. For this purpose, a BNWF model is implemented in OpenSees platform. The capability of the BNWF model to capture the SSI effects, nonlinear behavior and dynamic loading response are validated using the centrifuge and shake table test results. A comparative study is performed between the seismic response of the bridge pier supported on the rocking shallow foundation and conventional fixed-base foundation. Results of the study have established the beneficial effects of using the rocking shallow foundation for the seismic response analysis of the bridge piers.

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Chip-scale Temperature-compensated Superstructured Waveguide Bragg Grating Based Multiparametric Sensor

  • Vishwaraj, Naik Parrikar;Nataraj, Chandrika Thondagere;Jagannath, Ravi Prasad Kogravalli;Gurusiddappa, Prashanth;Talabattula, Srinivas
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.293-301
    • /
    • 2020
  • In this paper we propose and theoretically analyze a monolithic multiparametric sensor consisting of a superstructure of surface-relief waveguide Bragg gratings (WBGs), a micro-machined diaphragm, and a cantilever beam. Diaphragms of two different configurations, namely circular and square, are designed and analyzed separately for pressure measurement. The square diaphragm is then selected for further study, since it shows relatively higher sensitivity compared to the circular one, as it incurs more induced stress when any pressure is applied. The cantilever beam with a proof mass is designed to enhance the sensitivity for acceleration measurement. A unique mathematical method using coupled-mode theory and the transfer-matrix method is developed to design and analyze the shift in the Bragg wavelength of the superstructure configuration of the gratings, due to simultaneously applied pressure and acceleration. The effect of temperature on the wavelength shift is compensated by introducing another Bragg grating in the superstructure configuration. The measured sensitivities for pressure and acceleration are found to be 0.21 pm/Pa and 6.49 nm/g respectively.

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

Rajakudakan Wat Chotikaram: From Ruins to The Reconstruction of The Grand Stupa, Wat Chedi Luang, Chiang Mai

  • Kirdsiria, Kreangkrai;Buranautb, Isarachai;Janyaemc, Kittikhun
    • 수완나부미
    • /
    • 제13권2호
    • /
    • pp.167-186
    • /
    • 2021
  • The Grand Stupa is mentioned in historical text as 'Rajakudakan', which means a royal building with a multitiered superstructure. This Grand Stupa is the principal construction of Wat Chedi Luang, and marks the center of the Chiang Mai City Plan. This study argues that the Grand Stupa was built in 1391 during Phaya Saen Mueang Ma's reign, possibly inspired by the construction of Ku Phaya in Bagan. Thereafter, in 1545, the Grand Stupa's superstructure collapsed after the great earthquake, resulted in the irreparable damage since then. Therefore, a survey using a 3D laser scanner is conducted to collect the most precise data on the current condition of the Grand Stupa, yielding an assumption of its reconstruction. Other simultaneous stupas or those that show a close architectural relationship (e.g. stupas in Wat Chiang Man and Wat Lok Moli and the stupa of King Tilokaraj in Wat Chet Yot in Chiang Mai) are also employed as research frameworks for the reconstruction. As a result, the architectural research on the Grands Stupa, compared with simultaneous stupas, yields a fruitful argument that the pre-collapse superstructure form of the Grand Stupa marks the most architectural similarity to the stupa of Wat Chiang Man.