• 제목/요약/키워드: Supersonic nozzle

검색결과 417건 처리시간 0.024초

초음속 터빈 익렬의 유동특성에 대한 실험적 연구 (An experimental study on the flow characteristics of a supersonic turbine cascade)

  • 조종재;정수인;김귀순;박창규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1732-1737
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 3-dimensional supersonic nozzle was tested over a wide range of nozzle installation angle. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성 (Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance)

  • 김성인;박승오;이광섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF

Effect of Boundary Layer Swirl on Supersonic Jet Instabilities and Thrust

  • Han, Sang-Yeop
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.646-655
    • /
    • 2001
  • This paper reports the effects of nozzle exit boundary layer swirl on the instability modes of underexpanded supersonic jets emerging from plane rectangular nozzles. The effects of boundary layer swirl at the nozzle exit on thrust and mixing of supersonic rectangular jets are also considered. The previous study was performed with a 30°boundary layer swirl (S=0.41) in a plane rectangular nozzle exit. At this study, a 45°boundary layer swirl (S=1.0) is applied in a plane rectangular nozzle exit. A three-dimensional unsteady compressible Reynolds-Averaged Navier-Stokes code with Baldwin-Lomax and Chiens $\kappa$-$\xi$ two-equation turbulence models was used for numerical simulation. A shock adaptive grid system was applied to enhance shock resolution. The nozzle aspect ratio used in this study was 5.0, and the fully-expanded jet Mach number was 1.526. The \"flapping\" and \"pumping\" oscillations were observed in the jets small dimension at frequencies of about 3,900Hz and 7,800Hz, respectively. In the jets large dimension, \"spanwise\" oscillations at the same frequency as the small dimensions \"flapping\" oscillations were captured. As reported before with a 30°nozzle exit boundary layer swirl, the induction of 45°swirl to the nozzle exit boundary layer also strongly enhances jet mixing with the reduction of thrust by 10%.

  • PDF

초음속 노즐을 통하는 부족팽창 제트에 관한 수치계산적 연구 (2) (Numerical Study on Under-Expanded Jets through a Supersonic Nozzle(II))

  • 김희동;신형승
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1994-2004
    • /
    • 1996
  • Numerical calculation was applied to supersonic under-expanded jets, and compared with the results of a linear theory and other experiments. TVD difference scheme was employed to solve 2-dimensional and axisymmetric inviscid Euler equation. This paper aims to explore the effects of angle of divergence and design Mach number of nozzle on the structure of under-expanded jets. The angle of divergence was varied from 0 to 20 deg. The results show that the length of the first cell of the under-expanded jets decreases and Mach disk generates at lower nozzle pressure ratio, if the angle of divergence or design Mach number of nozzle increases. The distance from the nozzle exit to Mach disk in 2-dimensional jets becomes much larger than that of axisymmetric jets, and the widths of the jet boundary and the barrel shock wave are also larger than that of axisymmetric jets. Calculation results indicate that the configuration of the under-expanded jets is strongly dependent on the nozzle pressure ratio.

초음속 노즐에서 발생하는 유동 이력현상에 대한 실험적 연구 (Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle)

  • 남종순;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.206-212
    • /
    • 2011
  • 유체 시스템에서 히스테리시스 현상은 다양한 산업 및 공학의 응용 분야에서 발생하며, 주로 압력비의 시간변화 과정에서 발생한다. 초음속 노즐에서 충격파를 포함한 유동장은 이러한 히스테리시스 현상의 지배적인 영향을 받는다. 그러나 이와 관련된 유동의 물리적 현상에 대해서는 연구가 미비한 실정이다. 본 연구에서는 노즐구동압력비의 변화 과정 동안 초음속 노즐의 유동을 파악하기 위해 실험적 연구를 수행하였다. 순간 표면압력을 측정하기 위하여 다수의 압력변환기를 사용하였으며, 유동장의 가시화는 나노스파크 광원을 가지는 쉴리렌 가시화 장치를 이용하였다. 본 연구로부터, 히스테리시스 현상은 노즐의 기하학적 형상뿐만 아니라 압력비의 시간변화에 크게 의존하였다.

  • PDF

A Study on the Effect of Inlet Boundary Condition on Flow Characteristics of a Supersonic Turbine

  • Shin, Bong-Gun;Kim, Kui-Soon;Kim, Jin-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2005
  • The inlet boundary condition of computations about the supersonic turbine flow is commonly applied as far-field inlet boundary condition with specified velocity. However, the inflow condition of supersonic turbine is sometimes affected by the shocks or expansion waves propagated from leading edges of blade. These shocks and expansion waves alter the inlet boundary condition. In this case, the inlet boundary condition can not be specified Therefore, in this paper, numerical analyses for three different inlet conditions - fa-field inlet boundary condition, inlet boundary condition with a linear nozzle and inlet boundary condition with a converging-diverging nozzle - have been performed and compared with experimental results to solve the problem. It is found that the inlet condition with a linear nozzle or a converging-diverging nozzle can prevent changing of inlet boundary condition, and thus predict more accurately the supersonic flow within turbine cascade than a far-field inlet boundary condition does.

초음속 노즐과 벽면 충돌제트의 유동특성 (Characteristics of Supersonic Nozzle and Jet Impingement)

  • Hong, Seung-Kyu;Lee, Kwang-Seop;Sung, Woong-Je
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.256-262
    • /
    • 2001
  • Viscous solutions of supersonic side jet nozzle and supersonic jet impinging on a flat plate are simulated using three-dimensional Navier-Stokes solver. For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful devise as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. The aerodynamic characteristics of the side jet devise itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. On the other hand, the jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. As the plate is placed close to the nozzle, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. The amplitude of wall pressure fluctuations subsides as the plate/nozzle distance increases, and the frequency of the wall pressure is estimated on the order of 10.0 KHz. Objectives of this paper are to show accurate simulation of nozzle flow itself and to demonstrate the jet flow structure when the jet interacts with a wall at a close range.

  • PDF

발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구 (Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems)

  • 신정환;이인철;김희동;구자예
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

초음속 터번 익렬 앞전 형상 및 노즐-익렬 간격에 따른 유동 특성에 대한 실험적 연구 (An Experimental Study on the flow Characteristics of a Supersonic Turbine Cascade as the Leading Edge Shape and the Nozzle-Cascade Cap)

  • 조종재;김귀순;김진한;정은환;정호경
    • 한국추진공학회지
    • /
    • 제9권4호
    • /
    • pp.66-72
    • /
    • 2005
  • 본 연구에서는 초음속 충동형 터빈의 유동특성을 알아보기 위해 소형 초음속 풍동을 설계하였으며 Single pass Schlieren system을 이용하여 유동을 가시화하였다. 실험은 2차원 초음속 노즐과 익렬을 조합하여 블레이드 앞전 형상과 노즐-익렬 간극에 따라 실시하였다. 실험을 통해 충격파를 포함한 복잡한 유동 형태와 노즐-익렬, 충격파-경계층 상호작용 등을 관찰할 수 있었다.

더블벤츄리 연마노즐의 유동특성에 관한 연구 (Flow Characteristics of Double-Venturi Abrasive Blasting Nozzle)

  • 정승완;박상훈;송명준;이열
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.8-14
    • /
    • 2018
  • In the present work, a numerical study is carried out to observe the characteristics of the flow and particle behaviors in a supersonic double Venturi abrasive blasting nozzle. Schlieren flow visualization and Pitot pressure at the nozzle downstream are also carried out, and those measurement results are compared to the numerical ones for code validation. Open and closed secondary holes on the double Venturi nozzle surface are tested for various nozzle pressures, and the results are compared with the ones observed for other similar supersonic Laval nozzles.