• Title/Summary/Keyword: Supersonic aircraft

Search Result 111, Processing Time 0.027 seconds

Development of a multidisciplinary design optimization framework for an efficient supersonic air vehicle

  • Allison, Darcy L.;Morris, Craig C.;Schetz, Joseph A.;Kapania, Rakesh K.;Watson, Layne T.;Deaton, Joshua D.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.17-44
    • /
    • 2015
  • A modular multidisciplinary analysis and optimization framework has been built with the goal of performing conceptual design of an advanced efficient supersonic air vehicle. This paper addresses the specific challenge of designing this type of aircraft for a long range, supersonic cruise mission with a payload release. The framework includes all the disciplines expected for multidisciplinary supersonic aircraft design, although it also includes disciplines specifically required by an advanced aircraft that is tailless and has embedded engines. Several disciplines have been developed at multifidelity levels. The framework can be readily adapted to the conceptual design of other supersonic aircraft. Favorable results obtained from running the analysis framework for a B-58 supersonic bomber test case are presented as a validation of the methods employed.

An Investigation of the Effects of Flaperon Actuator Failure on Flight Maneuvers of a Supersonic Aircraft

  • Oh, Seyool;Cho, Inje;McLaughlin, Craig
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • The improvements in high performance and agility of modern fighter aircraft have led to improvements in survivability as well. Related to these performance increases are rapid response and adequate deflection of the control surfaces. Most control surface failures result from the failure of the actuator. Therefore, the failure and behavior of the actuators are essential to both combat aircraft survivability and maneuverability. In this study, we investigate the effects of flaperon actuator failure on flight maneuvers of a supersonic aircraft. The flight maneuvers were analyzed using six degrees of freedom (6DOF) simulations. This research will contribute to improvements in the reconfiguration of control surfaces and control allocation in flight control algorithms. This paper compares the results of these 6DOF simulations with the horizontal tail actuator failures analyzed previously.

A Study on the Calculation of Turbofan Engine Installed Performance for a Supersonic Aircraft (초음속 항공기에 장착되는 터보팬엔진의 장착성능산정에 관한 연구)

  • 김원철;김지현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • During the preliminary design phase of aircraft development, it is necessary to evaluate many potential engine/airframe combinations to determine the best solution to given set of mission requirements and it is very important to establish a methodology to calculate precisely engine installed performance. It was carried out to calculate turbofan engine installed performance of a supersonic aircraft for a given engine/aircraft configuration. Thus "Thrust minus drag accounting system" was introduced to identify and calculate the elements of installed thrust or installed propulsive force by using the database based on wind tunnel test data. This paper describes the calculated results of installed thrust of turbofan engine for a supersonic aircraft. aircraft.

A Study on the Prediction and Measurement of Afterbody Drag for a Supersonic Aircraft (초음속 전투기 후방동체 항력 예측 및 측정에 관한 연구)

  • Kim, Won-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.711-718
    • /
    • 2009
  • During the preliminary design phase of a supersonic aircraft, it is necessary to evaluate many potential engine/airframe combinations to determine the best solution to given set of mission requirements. And it is very important to establish a methodology to predict precisely afterbody drag so that accurate engine installed performance can be estimated. It was carried out in this paper to establish a methodology to predict afterbody drag of F-15K supersonic aircraft based on IMS(Integral Mean Slope) methodology, acquire afterbody drag data and compare its calculated data with the test data acquired from the wind tunnel test data based on 4.7% model scale. The comparison results showed good agreement between the calculated data and test data and it was found that the methodology described here to predict and test afterbody drag is acceptable.

The Effects of Leading Edge Flap Deflection on Supersonic Cruise Performance of a Fighter Class Aircraft (전투기급 항공기 초음속 순항 성능에 미치는 앞전플랩 변위 효과)

  • Chung, In-Jae;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.899-904
    • /
    • 2007
  • During the conceptual design phase of fighter class aircraft, the high speed wind tunnel test with 1/20 scale wing-body-tail model has been conducted to investigate the effects of leading edge flap deflection on the supersonic cruise performance of the aircraft. To select the proper leading edge flap deflection for the wind tunnel test, the aerodynamic characteristics due to various leading edge flap deflections have been analyzed by using corrected supersonic panel method. Based on the results obtained from the experimental and numerical approaches, the effects of leading edge flap deflection have shown to be useful to enhance the supersonic cruise performance of fighter class aircraft.

IR Susceptibility of Supersonic Aircraft according to Omni-directional Detection Angle (초음속 항공기 전방위 탐지각도에 따른 적외선 피격성 분석)

  • Nam, Juyeong;Chang, Injoong;Park, Kyungsu;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.638-644
    • /
    • 2021
  • Infrared guided weapons act as threats that greatly degrade the survivability of combat aircraft. Infrared weapons detect and track the target aircraft by sensing the infrared signature radiated from the aircraft fuselage. Therefore, in this study, we analyzed the infrared signature and susceptibility of supersonic aircraft according to omni-directional detection angle. Through the numerical analysis, we derived the surface temperature distribution of fuselage and omni-directional infrared signature. Then, we calculated the detection range according to detection angle in consideration of IR sensor's parameters. Using in-house code, the lethal range was calculated by considering the relative velocity between aircraft and IR missile. As a result, the elevational susceptibility is larger than the azimuthal susceptibility, and it means that the aircraft can be attacked in wider area at the elevational situation.

Analysis of MWIR and LWIR Signature of Supersonic Aircraft to Air-to-air and Surface-to-air Missile by Coupled Simulation Method (통합해석기법을 활용한 공대공 및 지대공 적외선 미사일 대응 초음속 항공기의 중적외선 및 원적외선 신호 분석)

  • Kim, Taehwan;Bae, Ji-Yeul;Kim, Taeil;Jung, Daeyoon;Hwang, Chang Su;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.764-772
    • /
    • 2014
  • The stealth performance of supersonic aircraft in recent air battlefield is one of the most significant feature for latest fighters. Especially, as the technology is advancing, the IR stealth capability becomes more important because of its passive characteristic. To design an aircraft with stealth capability, we must know how much the IR signature is generated from the aircraft. Also, predicting the IR signature of enemy's aircraft is tactically crucial. In this study, we calculated MWIR and LWIR infrared signature of $5^{th}$ generation supersonic aircraft against air-to-air and surface-to-air threat using IR simulation code and CFD coupled procedure.

A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Low Altitude (공기정보 오차에 의한 저고도 초음속 영역에서의 민감도 해석에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kim, Seong-Youl;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.80-87
    • /
    • 2005
  • T-50 supersonic jet trainer aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as altitude, VCAS(Calibrated Airspeed) and Angle of Attack from IMFP(Integrated Multi-Function Probe). IMFP sensors information have triplex structure using three IMFP sensors. Air-data selection logic is mid-value selection in three information from three IMFP sensors in order to have more reliability. From supersonic flight test at high altitude, air-data information is dropped simultaneously because of supersonic shock wave effect. This error information may affect to aircraft stability and safety in supersonic area at low altitude. This paper propose that sensitivity analysis and HQS(Handling Quality Simulator) pilot simulation in order to analyze flight stability and controllability in supersonic area at low altitude when these information is applied to flight control law.

A Study on the Design and Validation of Pilot Activated Recovery System to Recovery of an Aircraft Unusual Attitude (항공기 자세회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Kang, Im-Ju;Hur, Gi-Bong;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.307-317
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modem version supersonic jet fighter aircraft. Therefore, flight control system are necessary to stabilize an unstable aircraft and provides adequate handling qualities. Also, flight control systems of modem version aircraft employ a safety system to support emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. Therefore, automatic recovery system is necessary. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes. This paper addresses the concept of PARS and designed using nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by nonlinear analysis and real-time pilot evaluation using in-house software. The result of evaluation reveals that the PARS support recovery of an aircraft unusual attitude and improve a safety of an aircraft.

Drag Reduction Effect by Counter-flow Jet on Conventional Rocket Configuration in Supersonic/Hypersonic Flow

  • Kim, Yongchan;Kim, Duk-Min;Roh, Tae-Seong;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • The counter-flow jet from a supersonic/hypersonic vehicle causes a structural change in the shock wave generated around the aircraft, which can lead to reduced drag and heat loads. Since the idea is to mount a counter-flow jet device for drag reduction in the aircraft, it is necessary to understand the effect of such a device on the entire aircraft. In this study, the effect of drag reduction due to counter-flow jet on a conventional rocket configuration was analyzed through CFD analysis. The results showed that the drag reduction effect was the largest in the blunt region and that the counter-flow jet also affected the downstream of the aircraft. The analysis indicated that the drag reduction effect by the counter-flow jet was about 10 to 25 % when targeting the entire rocket-shaped area, while the effect was as high as 50% when targeting only blunt objects.