• Title/Summary/Keyword: Supersonic aerodynamic

Search Result 153, Processing Time 0.028 seconds

Simulation of Steady Flow Through Turbine System with Partial Admission Nozzle (부분흡입노즐방식의 터빈시스템에 대한 3차원 유동해석)

  • Hong Chang-Oug;Namkoung Hyuck-Joon;Woo Yoo-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.601-602
    • /
    • 2002
  • Numerical simulation using well-known commercial software Fine/Turbo is applied to the analysis of the aerodynamic performance for the supersonic turbine system with partial admission nozzle. Calculation was performed for coupled system of nozzle and blades using mixing plane method. In addition, calculations were also performed for the blades alone to investigate the effect of the performance variation with blade profile. These computational results are compared with the experiments. The agreement between the prediction and the experiment was found to be satisfactory..

  • PDF

A Numerical Analysis of Counter Jet Flow Effect on the Blunt-Body Vehicle (역분사 유동이 초음속 비행체에 미치는 영향에 대한 수치해석적 연구)

  • Seo Duck Kyo;Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • TIn this study, the counter-jet flows which designed for improvement of aerodynamic performance of the blunt body vehicle have been analyzed. The variations of the drag force and jet penetration depth due to changes in the stagnation properties of counter jet new such as total pressure, mach number, and total temperature. The counter jet flow, which is injected toward incoming supersonic freestream at stagnation region of blunt cone-cylinder vehicle, have been studied by using upwind flux difference splitting navier-stokes method. The changes in the stagnation pressure and Mach number resulted in large effects on the wall pressure and drag force, on the other hand tile total temperature changes did not.

  • PDF

The Analysis of Aerodynamic Characteristics for Busemann Biplane with Flap (Flap을 장착한 Busemann Biplane의 공력 특성 연구)

  • Tae, Myeong-Sik;Jeon, Seong-Hun;O, Se-Jong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.299-304
    • /
    • 2013
  • 초음속 조건에서 Busemann biplane은 충격파의 중첩에 의해 항력 감소가 일어난다. 그러나 받음각이 증가 할 경우, 앞전에서 궁형 충격파가 발생하여 항력이 급격하게 증가한다. 이에 본 연구에서는 busemann biplane에 플랩을 주어 궁형 충격파를 감소시킬 수 있는 flap biplane의 플랩 길이와 각도의 변화에 따른 공력 성능의 변화를 분석하였다. Flap biplane의 공력성능을 기본 biplane형상 및 diamond airfoil과 비교한 결과, 동일한 양력 조건에서 항력은 diamond airfoil에 비해 약 75%정도 감소함을 확인하였다. 그리고 플랩의 길이와 양항비는 선형의 관계가 있음을 확인하였고, 특정한 플랩의 각도에서 최대 양항비가 도출된다는 사실을 확인하였다. 마지막으로 전압력의 감소를 충격파의 강도로 정의하고, 이를 비교한 결과 flap biplane의 전압력 감소가 diamond airfoil에 비해 약 25%정도가 더 작게 나타난 사실로 부터 flap biplane의 소음 감소 효과를 유추할 수 있었다. flap biplane은 초음속 영역에서 항력과 소음의 감소에 효율적인 익형임을 확인하였다.

  • PDF

A Study on Aerodynamic Characteristics of Busemann Type Supersonic Biplane (부즈만 형의 초음속 복엽항공기에 대한 공력 특성 연구)

  • Mun, Chan-Ung;Kim, Hun;Yu, Gi-Wan
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.425-430
    • /
    • 2013
  • 본 연구에서 전산유체해석 프로그램인 EDISON_CFD를 이용하여 차세대 항공기 날개 형상으로 각광받고 있는 초음속 비행조건을 갖는 Busemann 형식의 복엽기 형상에 대한 공력특성을 연구하였다. 날개는 압축성 조건에서 2차원 에어포일로 간략화 하여 모델링하였으며, 마하수에 따라 발생하는 충격파와 팽창파의 상호작용을 통한 소닉붐의 감소 형태를 분석해 보고, 마하수에 따른 항력계수를 얻어내었으며, 익형과 항력계수, 소닉붐의 상관관계를 분석하여 초음속항공기에서 복엽기 형상이 가지는 장단점에 대하여 연구하였다.

  • PDF

A Performance Study of Vent Mixer with Geometric Characteristics in Supersonic Flow (초음속 유동 내 벤트 혼합기의 형상적 특성에 따른 성능 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • This paper studies the aerodynamic performance that the vent mixer-new conceptual supersonic mixer-showed with its geometric characteristics. The hole is 2 mm with 2 mm's distance from the wall in case 1 and with no distance in case 2. In case 3 die hole is 1 mm. Case 1 and case 2 showed the same total pressure recovery ratio, of which the case 3 was lower than that. While cases 1-3 had the same reattachment length, the shear layer was thicker in cases 1 and 2 than in case 3. Within the recirculation zone, cases 1 and 2 had lower pressure loss and higher velocity gradient difference than case 3-they enhance mixing between air and fuel. Separation bubble which is developed by the inflow into the recirculation zone has a significant effect on the total pressure recovery ratio in the combustor. Also separation bubble influences pressure distributions and recirculation flows in the recirculation zone. Therefore, inflow rate of air into the recirculation zone mainly affects the performance of vent mixer.

Experimental Study on the Static Stability of a Sounding Rocket Model in the Supersonic Wind Tunnel (과학로켓 모델의 정적 안정성에 대한 초음속풍동 실험연구)

  • Lee, Sang-Hyun;Cho, Hwan-Kee;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.856-861
    • /
    • 2010
  • In this work, experiments on hybrid sounding rocket were conducted to investigate the aerodynamic characteristics and analyze longitudinal static stability. Tests were performed on 1/10 scale models of sounding rocket through Mach number ranging from 1.75 to 2.5 and for angle of attack from $0^{\circ}$ to $6^{\circ}$. Aerodynamic forces and moments were measured by means of a 4 component internal balance. With measured forces and moments, static stability characteristics of rocket were calculated. Tests were made for three models with different length to determine the effect of body length. The visualization of shock waves was carried out by Schlieren optical system to observe variations of shock waves with Mach number and angle of attack.

A Study on Phugoid Mode in Longitudinal Axis of T-50 (T-50 세로축 장주기 모드 운동 특성에 관한 연구)

  • Kim, Jong-Seop;Hwang, Byeong-Mun;Kim, Seong-Jun;Heo, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability. The longitudinal two modes are the short period with high frequency and the phugoid mode with low frequency. The design goals of longitudinal control laws is concerned with the short period damping and frequency optimization using lower order equivalent system and utilizing the requirement of MIL-F-8785C. Analysis of short period mode has been and continues to be performed This paper addresses the analysis of aircraft phugoid node characteristics such as damping, natural frequency, and analysis of aircraft pitch motion that impacted by angle of attack limiter and auto pitch attitude control law.

A Study on Aircraft Sensitivity Analysis for C.G Variation of Longitudinal Axis (항공기 세로축 무게중심의 변화에 따른 민감도 해석에 관한 연구)

  • 김종섭
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.83-91
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in longitudinal axis to achieve performance enhancements and improve stability. The flight control law of T-50 advanced trainer employs RSS concept in order to improve the aerodynamic performance and guarantee aircraft stability. The longitudinal center of gravity(X-c.g) varies as a function of external stores, fuel state and gear position. Shifts in X-c.g relate directly to longitudinal static margin in aircraft stability. This paper deals the maximum aft X-c.g for critical aircraft loadings and checks static margin limits using sensitivity such as damping, natural frequency, gain and phase margin. And nonlinear analysis was conducted for such as short period input. And also, this paper shows the T-50 aircraft stability based on the result of high angle of attack flight such as upright and inverted departure.

Performance Improvement of T-50 Fine Tracking Using Pilot Prefilter (조종사 필터에 의한 T-50 정밀추적 성능 향상)

  • Kim, Chong-Sup;Bae, Myung-Whan;Hwang, Byung-Moon;Koh, Gi-Oak;Kang, Cheul;Sung, Duck-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.625-630
    • /
    • 2004
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The laws of flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements. Particularly, the design of longitudinal control laws for utilizing RSS methods greatly affects the performance of the aircraft in Air-to-Air Tracking and Air-to-Ground modes, which improves weapon delivery. In the area of Airto- Air Tracking, the development of longitudinal control laws aids in the fine tracking and gross acquisition of other aircraft. This paper proposes that Air-to-Air fine tracking can be improved via RSS control law design methods without effecting Air-to-Air gross acquisition.

  • PDF

Dual-Limit Cycle Oscillation of 2D Typical Section Model considering Structural Nonlinearities (구조 비선형을 고려한 이차원 단면 날개 모델의 이중 제한 주기 운동)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.28-33
    • /
    • 2005
  • Nonlinear aeroelastic characteristics of a two dimensional typical section model with bilinear plunge spring are investigated. Doublet-point method(DPM) is used for the calculation of supersonic unsteady aerodynamic forces which are approximated by using the minimum-state approximation. For nonlinear flutter analysis structural nonlinearity is represented by an asymmetric bilinear spring and is linearized by using the describing function method. The linear and nonlinear flutter analyses indicate that the flutter characteristics are significantly dependent on the frequency ratio. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a wide range of air speeds below or above the linear flutter boundary. The nonlinear flutter characteristics and the nonlinear aeroelastic responses are investigated.