• Title/Summary/Keyword: Supersonic Underexpanded Jet

Search Result 27, Processing Time 0.02 seconds

Supersonic Jet Noise Control via Trailing Edge Modifications

  • Kim, Jin-Hwa;Lee, Seungbae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1174-1180
    • /
    • 2001
  • Various experimental data, including mixing areas, cross correlation factors, surface flow patterns on nozzle walls, and far field noise spectra, was used to draw a noise control mechanism in a supersonic jet. In the underexpanded case, mixing of the jet air with ambient air was significantly enhanced as presented before, and mixing noise was also dramatically reduced. Screech tones, in the overexpanded case, were effectively suppressed by trailing edge modifications, although mixing enhancement was not noticeable. From mixing and noise performance of nozzles with modified trailing edges, enhancing mixing through streamwise vortices seems an effective way to reduce mixing noise in the underexpanded flow regime. However, screech tones in the overespanded flow regime is well controlled or suppressed by making shock cells and/or spanwise large scale structures irregular and/or less organized by a proper selection of trailing edges. The noise field in the overexpanded flow regime was greatly affected by the symmetricity of the nozzle exit geometry. In the underexpanded flow regime, the effects of the symmetricity of the nozzle exit on mixing were negligible.

  • PDF

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Numerical Simulation of Axisymmetric Supersonic let Impingement on a Flat Plate (수직평판에 충돌하는 축대칭 초음속 제트의 수치 연구)

  • 신완순;이택상;박종호;김윤곤;심우건
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 2000
  • When supersonic underexpanded jets are exhausted from the nozzle, complex shock cell configurations such as barrel shock, expansion fan, Mach disc, and exhaust-gas jet boundary are appeared repetitively. The shock cell is smeared by turbulence dissipation and disappeared in long distance from the nozzle. When underexpanded jet is suddenly impinged on a flat plate, it forms very complex flow structure. In this paper, we solve compressible Wavier-Stokes equation adapting finite volume method to obtain jet impingement flow structure and compare calculated data with experimental ones. It is shown that numerical simulation data are in good agreement with experimental one in a short distance between nozzle exit and flat plate and little influence of underexpanded ratio is appeared in jet impingement now distribution.

  • PDF

Behaviors of Mach Disk in Underexpanded Supersonic Moist Jet (초음속 습공기 제트에서 발생하는 마하디스크의 거동)

  • 백승철;김희동;권순범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.87-90
    • /
    • 2003
  • It has been well known that the major feature of compressible flow fields might be different depending on their formation processes. The objectives of the present study is to investigates the effect of jet development on the time history of supersonic jet flow field, accompanying nonequilibrium condensation. Especially, the behaviors of Mach disk diameter and location in a supersonic moist air jet are presented in terms of nozzle pressure ratio and initial relative humidity. The relative humidity of moist air is controlled at the nozzle supply, and the nozzle pressure ratio is varied to obtain the moderately underexpanded flows at the exit of the nozzle, installed in an indraft wind tunnel. It is found that at the same pressure ratio the Mach disk diameter increases with the initial relative humidity, while moves further upstream. Furthermore, the values of Mach disk diameter and location for increasing pressure ratio show larger than those for increasing.

  • PDF

Direct Solving the Boltzmann Equation for Supersonic Jet Problems with Instabilities

  • Aristov V.V.;Zabelok S.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.268-269
    • /
    • 2003
  • The Boltzmann kinetic equation is solved directly by means of the conservative splitting method. Underexpanded supersonic free jet flows with small Knudsen numbers are studied. In this numerical simulation features intrinsic to appropriate experiments are observed. Streamwise vortices in a mixing layer and chaotic downstream temporal-spatial fluctuations of microscopic quantities with large amplitude are obtained.

  • PDF

Effect of Outer Nozzle Ejection Angle on Jet Structure issuing from Supersonic Dual Coaxial Nozzle (초음속 동축 제트의 구조에 미치는 외부노즐 분사각의 영향)

  • Baek, Seung-Cheol;Kwon, Soo-Young;Joo, Seong-Yeol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.426-431
    • /
    • 2001
  • This paper experimentally investigates the characteristics of dual coaxial jet issuing from inner supersonic nozzle and four kinds of outer converging nozzle of 40, 50, $60^{\circ}$ and $70^{\circ}$ in outer ejection angle. The pressure ratio of the stagnation to the exit ambient pressures in the inner supersonic nozzle of constant expansion rate is 7.5, which is corresponded to the condition of a slightly underexpanded, and that of outer nozzle is 4.0. Flow visualizations by using of shadowgraph method, impact pressure and centerline static pressure measurements are presented. It is found that the jet structure is changed significantly by the variation of outer nozzle ejection angle. Impact pressure level is lower and undulation of static pressure is higher, as the injection angle of outer jet increases.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on a Perpendicular Flat Plate (평판 위에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1999
  • Impinging jets are observed when exhaust gases from missiles or V/STOL aircrafts impinge on the ground, flame deflector, ship deck, etc. The flow shows different patterns according to the nozzle geometry, nozzle-to-plate distance, and plate angle, for example. This paper describes experimental works on the phenomena (pressure distribution, occurrence of stagnation bubble, and so on.) when underexpanded supersonic jets impinge on a perpendicular flat plate using a supersonic cold-flow system, and compares the results with those obtained using a shock tunnel. The flow characteristics for the supersonic cold-flow system were also investigated. Surface pressure distribution of supersonic cold-flow system differed from that of shock tunnel because of water and temperature in the low-pressure chamber. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

A NUMERICAL STUDY ON JET IMPINGEMENT OF PULSED PLASMA DISCHARGE ON A FLAT PLATE (벽면에 충돌하는 펄스 플라즈마 제트 유동특성에 대한 수치적 연구)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • In this study, time-dependent numerical analysis was carried out to investigate the plasma jet impingement on a flat plate, and a compressible form of two-dimensional inviscid gas dynamics equations were solved using the flux corrected transport algorithm. The mathematical modeling of Joule heating in the polycarbonate capillary bore and the mass ablation from the bore wall was incorporated in the numerical analysis and the series of computation was performed for three cases depending on the distance of the opposing plate from the capillary exit. The computational results reveal that the presence of the opposing plate does not affect the flow conditions inside the capillary when compared to the case of open-air plasma discharge. In the exterior region, the flow structure shows the typical supersonic underexpanded jet which consists of the strong Mach disk in front of the opposing plate and the barrel shock at the side of the jet. It is found that the shock evolution becomes more quasi-steady when the plate distance decreases. Also, the effects of the distance between the capillary bore exit and the opposing plate on the flow conditions along the opposing plate are investigated and the pressure variation on the plate shows more complicated interaction between the plasma discharge and the opposing plate when the location of plate becomes closer to the capillary exit.

An Experimental Study of Supersonic Dual Coaxial Free Jet

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Lee, Byeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2107-2115
    • /
    • 2003
  • A supersonic dual coaxial jet has been employed popularly for various industrial purposes, such as gasdynamic laser, supersonic ejector, noise control and enhancement of mixing. Detailed characteristics of supersonic dual coaxial jets issuing from an inner supersonic nozzle and outer sonic nozzles with various ejection angles are experimentally investigated. Three important parameters, such as pressure ratios of the inner and outer nozzles, and outer nozzle ejection angle, are chosen for a better understanding of jet structures in the present study. The results obtained from the present experimental study show that the Mach disk diameter becomes smaller, and the Mach disk moves toward the nozzle exit, and the length of the first shock cell decreases with the pressure ratio of the outer nozzle. It was also found that the highly underexpanded outer jet produces a new oblique shock wave, which makes jet structure much more complicated. On the other hand the outer jet ejection angle affects the structure of the inner jet structure less than the pressure ratio of the outer nozzle, relatively.