• Title/Summary/Keyword: Supersonic Nozzle Flow

Search Result 304, Processing Time 0.022 seconds

Design and Experimental Verification of Two Dimensional Asymmetric Supersonic Nozzle (이차원 비대칭형 초음속 노즐 설계와 실험적 검증)

  • Kim, Chae-Hyoung;Sung, Kun-Min;Jeung, In-Seuck;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.899-905
    • /
    • 2009
  • Most supersonic-flow test facility has axisymmetric nozzles or two-dimensional symmetric nozzles. Compared to these nozzles, a two-dimensional asymmetric nozzle has advantages of reducing low cost for various Mach number testing and undesirable flow structure such as shock wave reflection because the nozzle part can be directly connected to the test section part in this type of nozzle. The two-dimensional asymmetric nozzle, which was Mach number 2, was designed for supersonic combustion experiment. And it was verified with the numerical analysis and visualization of Mach wave. This study suggested the practical method for design and verification of supersonic two dimensional asymmetric nozzles.

Study of the Correctly-Expanded Supersonic Jets (초음속 적정 팽창 제트 유동에 관한 연구)

  • Jeong Mi-Seon;Kim Jae-Hyung;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.127-130
    • /
    • 2002
  • Supersonic jet flow has been applied to many various industrial applications of manufacturing fields. Such a supersonic jet is generally classified by three flow patterns, depending on the flow state at nozzle exit, that is, under-, correctly- and over-expanded flows. Of these three flows, the correctly-expanded supersonic jet is most frequently used since it provides a maximum performance of a flow device. However detailed information on what conditions are the Jet correctly expanded at the exit of nozzle is not well known. In the current study, computations are applied to the axisymmetric, compressible, Navier-Stokes equations. The design Mach number used are 2.0,1.2 and 2.6. The computational results obtained are compared with the previous experimental ones. A theoretical analysis is conducted to predict the major features of the correctly-expanded jet. The results show that the jet core length is increased as Mach number is increased.

  • PDF

Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle (초음속 노즐에서 발생하는 유동 이력현상에 대한 실험적 연구)

  • Nam, Jong-Soon;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Hysteresis phenomena in fluid flow systems are frequently encountered in many industrial and engineering applications and mainly appear during the transient processes of change of the pressure ratio. Shock-containing flow field in supersonic nozzles is typically subject to such hysteresis phenomena, but associated flow physics is not yet understood well. In the present study, experimental work has been carried out to investigate supersonic nozzle flows during the transient processes of change in the nozzle pressure ratio. Time-dependent surface wall pressures were measured by a multiple of pressure transducers and the flow field was visualized using a nano-spark Schlieren optical method. The results obtained show that the hysteresis phenomenon is strongly dependent on the nozzle geometry as well as the time scale of the change of pressure ratio.

An Experimental Study on the Screech Tone in Supersonic Jet (초음속 제트의 스크리치 톤에 관한 실험적 연구)

  • Lim, Chae-Min;Kwon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2023-2028
    • /
    • 2004
  • The effects of nozzle-lip thickness on the relationship between screech tone and broadband shock-associated noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. A baffle plate was installed at the exit of the nozzle and its size was varied to obtain different nozzle-lip thicknesses. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained clearly show that the screech tones are influenced by the nozzle-lip thickness. It is found that the screech tone and its peak amplitude are strongly dependent on whether the jet is over-expanded and under-expanded at the nozzle exit.

  • PDF

Experimental Study to Investigate the Flow Characteristics of a Supersonic Turbine Depending on the Relative Positions of Nozzle and Cascade (노즐과 익렬의 상대 위치에 따른 초음속 터빈의 유동특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.30-38
    • /
    • 2010
  • Experiments were performed to investigate the flow characteristics of a partial admission supersonic turbine depending on the relative positions of nozzle and cascade. The flow was visualized by a Schlieren system. The static pressures at the turbine cascade inlet, passage and outlet were measured by pressure transducers. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions of the supersonic turbine were observed by the experiments. And the flow characteristics in the supersonic turbine as the relative positions were observed.

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

  • Haoui, Rabah
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2011
  • The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value. The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion to obtain the thrust necessary to the displacement of the vehicles.

An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet (초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구)

  • Kweon Yong-Hun;Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • The present paper describes an experimental work to investigate a transonic resonance in supersonic jet that is discharged from a convergent-divergent nozzle. When the nozzle m: at low nozzle pressure ratios, the shock occurs within the divergent section of the nozzle. The transonic resonance of a jet flow is generated by an emission of strong acoustic tones due to the unsteadiness of the shock. A Schlieren optical system is used to visualize the supersonic jet flow In order to specify the flow resonance of a jet, acoustic measurements are performed to obtain noise spectra. The acoustic characteristics of transonic resonace are compared with those of screech tones. The results obtained show that unlike screech frequency, the transonic reso- nace frequency somewhat increases with increasing the nozzle pressure ratio.

  • PDF

Supersonic Jet Noise Control via Trailing Edge Modifications

  • Kim, Jin-Hwa;Lee, Seungbae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1174-1180
    • /
    • 2001
  • Various experimental data, including mixing areas, cross correlation factors, surface flow patterns on nozzle walls, and far field noise spectra, was used to draw a noise control mechanism in a supersonic jet. In the underexpanded case, mixing of the jet air with ambient air was significantly enhanced as presented before, and mixing noise was also dramatically reduced. Screech tones, in the overexpanded case, were effectively suppressed by trailing edge modifications, although mixing enhancement was not noticeable. From mixing and noise performance of nozzles with modified trailing edges, enhancing mixing through streamwise vortices seems an effective way to reduce mixing noise in the underexpanded flow regime. However, screech tones in the overespanded flow regime is well controlled or suppressed by making shock cells and/or spanwise large scale structures irregular and/or less organized by a proper selection of trailing edges. The noise field in the overexpanded flow regime was greatly affected by the symmetricity of the nozzle exit geometry. In the underexpanded flow regime, the effects of the symmetricity of the nozzle exit on mixing were negligible.

  • PDF

Three Dimensional Supersonic Jet Flow Analysis Impinging on Flame Deflector Surface (화염유도로 주위의 3차원 초음속 제트 유동 해석)

  • Park, S.K.;Choi, B.K.;Yoon, K.T.;Woo, Y.C.;Lee, D.S.;Kang, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.494-498
    • /
    • 2001
  • When supersonic jet impinges on wall from the nozzle, complex flow pattern appears such as Mach disc, expansion fan, and jet boundary. The numerical computation of this supersonic jet is important on flame deflecctor design for launch space especially. In this paper, we analyzed supersonic jet structure impinging on deflector wall using three dimensional steady and unsteady compressible equation and showed temperature and pressure distribution on the wall surface. As a result, some dominant factors of jet flows are discussed for conceptual design of flame deflector.

  • PDF