• Title/Summary/Keyword: Supersonic Air Intake

Search Result 16, Processing Time 0.022 seconds

A Study on the Performance Design Schemes of the Supersonic Air Intakes (초음속 공기 흡입구 성능설계 기법 연구)

  • Byun, Jong-Ryul;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.992-995
    • /
    • 2011
  • A study on the performance design schemes of the supersonic air intakes applied to the supersonic air-breathing propulsion system(Ramjet/Scramjet) was conducted and for two kinds of air intakes, the preliminary configuration designs and the performance analysis models were established. For axisymmetric conical air intake and two dimensional rectangular air intake, the performance effects were assessed according to compression angles and shock wave numbers.

  • PDF

Study on the Flow Characteristics of Supersonic Air Intake at Mach 4 (마하4 초음속 공기 흡입구 유동 특성에 관한 연구)

  • ;;;;Shigeru , Aso
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.61-70
    • /
    • 2006
  • A Supersonic air intake model was designed for the high performance ramjet and dual-mode scramjet engine to operate at Mach 4 flight condition. The air intake was tested in the blowdown-type wind tunnel of Kyushu University to identify the internal flow characteristics corresponding to the flight parameters such as the back pressure, angle of attack and angle of yaw. Flow visualization was achieved by the Schlieren and oil flow visualization techniques. The intake performance was analyzed quantitatively based on the surface pressure and total Pressure measurements. The experimental results were compared with the computational fluid dynamics results. The present study exhibits the fundamental but rarely found experimental results of the high Mach number supersonic air intake.

Experimental Study on the Supersonic Air Intake at Mach 4 (마하4 초음속 공기 흡입구 유동 특성에 관한 실험적 연구)

  • Lee Hyoung-Jin;Jeung In-Seuck;Aso Shigeru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.394-398
    • /
    • 2005
  • Ramjet engine have been usually operated on Mach $1.5\sim3$ as the vehicle of supersonic cruising engine and studied about the higher performance above Mach 4. The research of Duel mode Scramjet engine which have duel operating mode of ramjet/Scramjet are in progress actively nowadays. This paper suggests the effect the flow characteristics and the effects of back pressure, angle of attack, angle of yow on the supersonic air intake on mach 4 through the Schlieren/Oil flow visualization, and pressure measurement on experimental model.

  • PDF

Buzz Margin Determination of Supersonic Intake (초음속 흡입구의 버즈여유 결정기법)

  • Park, Ik-Soo;Choi, Jong-Ho;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.132-135
    • /
    • 2011
  • A technology for buzz margin determination is suggested to obtain stable shock structure and high compression efficiency of supersonic intake. By using the shock equilibrium equation of supersonic intake, sensitivity equation of terminal shock position for free stream and back pressure is induced and disturbances are quantified through statistical approach. Numerical results show that the sensitivity of shock position for disturbances is proportional to Mach number and the back pressure is dominant for variance of terminal shock position.

  • PDF

Study on the Buzz Characteristics of Supersonic Air Intake at Mach 2.5 (마하 2.5 초음속 공기흡입구의 버즈 특성에 관한 연구)

  • Lee, Hyoung-Jin;Park, Tae-Hyoung;Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.426-437
    • /
    • 2007
  • off-design conditions, supersonic air inlets often encounter the problem of aerodynamic instability, called inlet buzz, which causes the significant degradation of the engine performance. An experimental and numerical study was conducted to investigate the phenomenon of supersonic inlet buzz on a generic, axisymmetric, external-compression inlet with a single-surface center-body. It is understood the mechanism of buzz onset as proving that the origin of buzz is the flow choking induced by separation at the intake throat. Also it is observed the intermittent and continuous buzz mode as area ratio varies and understood the transition process through this study. The buzz frequency become to be higher as decreasing the area ratio, but for each area ratio, the frequency of pressure oscillation is the same at all points of intake.

Experimental Study on a Rectangular Variable Intake for Space Planes

  • Kojima, T.;Taguchi, H.;Okai, K.;Futamura, H.;Maru, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.649-656
    • /
    • 2004
  • Hypersonic wind tunnel test of the rectangular variable geometry intake is performed. For realization of a Precooled turbojet engine, development of a hypersonic ramjet engine is planned. To investigate performance of the intake of the hypersonic ramjet engine, wind tunnel test is done with freestream Mach number of 5.1. The total pressure recovery was 18 % with 12.9 % of ramp bleed. Several reasons for low total pressure recovery are shown. Supersonic internal compression is not enough. Then, the throat Mach number is high (M2.61) and total pressure losses at the terminal shock is large. Supersonic flow at the throat and position of the terminal shock is sensitive to a difference of the second ramp's throat height and the third ramp's throat height. Flow separations at the second ramp's trailing edge and the third ramp's leading edge are seen those could result in the trigger of unstart. The seal mechanism between the ramps and the sidewalls is important.

  • PDF

A Study on Buzz Margin Control in Supersonic Engine Intake using PID Controller (PID 제어기를 이용한 초음속 엔진 흡입구의 버즈마진 제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Kang, Myoung-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-92
    • /
    • 2009
  • Total pressure recovery ratio in intake is crucial factor to the operational characteristics of supersonic propulsion system because it does not compress inlet air mechanically by compressor, but does compress inlet air by ram compression. As the result of that the dynamic characteristic analysis of engine was performed before the controller was designed, it could be ascertained when the AoA of flight vehicle increases, the buzz margin decreases so that the shock wave produced outside intake in the specified area according to flight operation's characteristics. Therefore the PID control algorithm was designed to be controlled buzz margin that the characteristic of shock wave could meet the requirement of performance in intake. The PID controller was designed that the buzz margin value is being positive number using the control variables; fuel flow and nozzle throat area.

  • PDF

Study on the Buzz Characteristics of Supersonic Air Intake at Mach 2.5 (마하 2.5 초음속 공기흡입구의 버즈 특성에 관한 연구)

  • Lee, Hyoung-Jin;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.331-335
    • /
    • 2006
  • Theoretically, stable operations of an inlet are achieved at the design condition. However, at off-design conditions supersonic inlets often encounter the problem of aerodynamic instability, called inlet buzz. During inlet buzz, supersonic inlets exhibit considerable oscillation of the shock system in front of the inlet and corresponding large pressure fluctuations downstream. This phenomenon results in decrease of engine performance. An experimental and numerical study was conducted to investigate the phenomenon of supersonic inlet buzz on a generic, axisymmetric, external-compression inlet with a single-surface center-body. This study suggest that intermittent buzz exist and the frequency become to be large as increasing the back pressure.

  • PDF

Investigation of Oswatitsch Scheme for Maximum Total Pressure Recovery of Hypersonic Wedge-type Intakes (극초음속 쐐기형 흡입구의 최대 전압력 회복률을 위한 오스와치 기법 분석)

  • Heo, Yub;Moon, Kyoo-Hwan;Sun, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1031-1038
    • /
    • 2017
  • In order to improve the performance of the air breathing engines, it is important to maximize the total pressure recovery through air intake. In this study, we investigated whether the Oswatitsch method, which guarantees the maximum pressure recovery for supersonic intake, is effective at hypersonic speed by compressing the intake air with the same intensity at each ramp. The non-linearity of the shock wave normal Mach number at each ramp stage was analyzed by comparing the compression ramp angle and the number of ramp to the inflow Mach number in terms of compressible thermodynamics and the operation limits of the inlet. Based on this analysis, the Oswaitisch technique yields valid conditions not only in supersonic but also hypersonic flight regime.

Buzz Margin Control for Supersonic Intake Operating over Wide Range of Mach Number (넓은 마하수 영역에서의 초음속 흡입구 버즈마진 제어기법)

  • Park, Iksoo;Park, Jungwoo;Lee, Changhyuck;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • Buzz margin scheduling and control technique which are suitable to regulate stable and high pressure air in wide range of Mach number are suggested for fixed geometry of a supersonic intake. From the analysis of preceding study, most effective control variable is induced and scheduling law is newly suggested in a real application point of view. The appropriateness of the control law in wide range of Mach number is addressed by numerical simulation of controlled propulsion system. Also, the simulation for stabilization and tracking performances of the controller are studied to investigate the phenomena under flight maneuver and disturbances.