• Title/Summary/Keyword: Superoxide Anion

Search Result 473, Processing Time 0.033 seconds

Purification and Characterizatlon of a Cu, Zn-Superoxide Dismutase from Adult Paragonimus westermani (폐흡충 성충 Cu, Sn-Superoxide Dismutase의 정제 및 생화학적 특성)

  • 정영배;송철용
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 1991
  • In cytosolic (raction of adult Paragonimus westermani, superoxide dismutase activity was identified (4.3 units/mg of specific activity) using a xanthine-xanthine oxidase system. The enzyme was purified 150 fold in its activity using the ammonium sulfate precipitation, DEAE-Trisacryl M anion-exchange chromatography and Sephadex G-100 molecular sieve chromatography. The enzyme exhibited the enhanced activity at pH 10.0. The enzyme activity totally disappeared in 1.0mM cyanide while it remained 77.8% even in 10 mM azide. These findings indicated that the ensyme was Cu, Zn-SOD type. Molecular mass of the enzyme was estimated to be 34 kDa by gel filtration and 17 kDa on reducing SDS-polyacrylamide gel electrophoresis which indicated a dimer protein.

  • PDF

In vitro Antioxidant Activity of Ogae (Korean Native Black Fowl) Egg White Protein Hydrolysates Fractionated by Ultrafiltration (오계란 단백질 가수 분해물 제조 및 한외여과 분획물의 in vitro 항산화 활성 특성)

  • Ha, Yoo Jin;Kim, Seul Ki;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.673-682
    • /
    • 2017
  • Protein hydrolysates derived from plants and animals having antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity has been known as playing important role like hormone. This study was fractioned to hydrolysis of Ogae egg white protein using the ultrafiltration. The antioxidant activity of the produced peptides was analyzed. As a result, the maximum value of DPPH radical scavenging was 1 kDa(70.83 %), hydroxy radical scavenging was 5 kDa(47.01 %), superoxide anion radical scavenging was 5 kDa(40.57 %), and $Fe^{2+}$ chelation ability was 5 kDa(29.87 %). Furthermore, the antioxidant Inhibition concentration ($IC_{50}$) of peptides was evaluated for each fraction. As a result, the maximum value of HDS was superoxide anion radical scavenging($IC_{50}$, 5.42 mg/ml). 1 kDa was $Fe^{2+}$ chelation ability($IC_{50}$, 1.67 mg/ml), 5 kDa was $Fe^{2+}$ cheating ability($IC_{50}$, 2.09 mg/ml), 10 kDa was $Fe^{2+}$ cheating ability($IC_{50}$, 2.61 mg/ml), papain was $Fe^{2+}$ cheating ability($IC_{50}$, 4.53 mg/ml). Therefore, we expect that peptides produced from Ogae egg white protein using 5 kDa fraction are useful as an antioxidant functional food ingredients.

The Effect of Superoxide Anion Production by PMN on Pneumocyte Injury in Patients with Bronchial Asthma (기관지천식환자에서 다형핵구의 과산화 음이온 생성능이 폐포세포 손상에 미치는 영향)

  • Kim, Young-Kyoon;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.3
    • /
    • pp.213-222
    • /
    • 1993
  • Background : Bronchial asthma has been known as an inflmmatory disease. There have been many evidences that polymorphonuclear leukocytes (PMN) might play an important role in the pathogrnesis of asthma. Although many investigators suggested that pneumocyte injury by PMN-derived oxygen radicals may contribute to the pathogenesis of asthma, there has been few report for a direct evidence of oxygen radicals-mediated pneumocyte injury in bronchial asthma. Furthermore the exact mechanism of oxygen radicals-mediated pneumocyte injury is still controversy. This study was designed to establish a direct in vitro evidence and its clinical significance of pneumocyte injury by PMN-derived superoxide anion in bronchial asthma and to elucidate the main mechanism of superoxide anion-mediated pneumocyte injury. Methods : 12 stable asthmatics and 5 healthy volunteers were participated in this study. PMN was separated from peripheral venous blood samples by using dextran sedimentation and Ficoll-Hypaque density gradient separation method. Superoxide anion productions by PMN and plasma SOD activities were measured by spectrophotometric assay using the principle of SOD inhibitable cytochrome c reduction. PMN-mediated pneumocyte injuries were measured by $^{51}Cr$-release assay using A549 pneumocytes and were expressed as percent lysis and percent detachment. Results: 1) PMN from asthmatics produced more amount of superoxide anion compared to PMN from normal subjects ($6.65{\pm}0.58$ vs $2.81{\pm}0.95\;nmol/1{\times}10^6$ cells, p<0.05), and showed an inverse correlation with $FEV_1$(R=-0.63, p<0.05), but no correlation with $PC_{20}$ histamine in asthmatics. 2) Plasma SOD activities were decreased in asthmatics compared to normal subjects but not significant, and showed a positive correlation with $FEV_1$(R=0.63, p<0.05) but no correlation with $PC_{20}$ histamine in asthmatics. 3) There were a positive correlation between plasma SOD activity and superoxide anion production by PMN in normal subjects (R=0.88, p<0.05) but not in asthmatics. 4) PMN-mediated pneumocyte injury was predominantly expressed as cell detachment rather than cell lysis in both groups, and PMN from asthmatics showed more potent cytotoxic effect on A549 pneumocytes compated to PMN from normal subjects. PMN-mediated detachment rather than lysis of A549 pneumocytes was significantly inhibited by in vitro SOD but not by diluted serum. 5) PMN-mediated detachment rather than lysis of A549 pneumocytes showed a good correlation with superoxide anion production by PMN (R=0.90 in normal subjects, R=0.82 in asthmatics, p<0.05) but no correlation with plasma SOD activity. PMN-mediated pneumocyte injuries were not correlated with $FEV_1$ or $PC_{20}$ histamine in asthmatics. 6) There were no significant differences in PMN-mediated pneumocyte injuries between allergic and nonallergic asthmatics. Conclusion : Our results suggest that pneumocyte injury by PMN-derived superoxide anion may partially contribute to the pathogenesis of asthma and that cell detachment rather than cell lysis may be the mechanism of superoxide anion-mediated pneumocyte injury.

  • PDF

Scavenging Effects of Tea Catechins on Superoxide and Hydroxy Radical

  • Park, Jaeil;Chen, Liuji;Yang, Xianqiang;Shen, Shengrong;Wang, Yuefei;Ho, Ryu-Beung
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.75-79
    • /
    • 2002
  • Tea catechins, the most important compounds in tea polyphenols, can efficiently scavenge superoxide anion free-radical ($O_2$.), hydroxyl radical. (.OH) The mechanism of scavenging active oxygen free radicals was investigated by ESR spin trapping technique and Chemiluminescence. Results showed that various tea catechins constitute an antioxidant cycle in accordance with the decreasing order of the first reductive potential, and produce the effect of cooperative strength each other. Esterificated catechins could scavenge active oxygen free radicals more effectively than the non-esterificated ones. When.OH and $O_2$.- were scavenged by (-)-epigallocatechin gallate [(-)- EGCG], the stoichiometric factors were 6, and the rate constants of scavenging reaction reached $7.71{\times}10^6$ and $3.52{\times}10^{11}$ L $mmol^{-1}s^{-1}$, respectively. In the mean time, tea catechins could scavenge superoxide anion fiee radical ($O_2$-.) and hydroxyl radical (.OH) in a dose dependent manner. But at higher concentration or pH value, tea catechins can induce the prooxidant.

  • PDF

Antiradical Capacities of Perilla, Sesame and Sunflower Oil

  • Hong, Sun-Hee;Kim, Mi-Jin;Oh, Chan-Ho;Yoon, Suk-Hoo;Song, Yeong-Ok
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • The aim of this study is to examine the radical scavenging activity of perilla and sesame oil that Koreans traditionally consume. For DPPH radical scavenging activity, oil and its hexane/70% methanol extracts (ME) are used and for superoxide and hydroxyl radical scavenging activities, ME are used. Unrefined perilla oil, sesame oil, and refined sunflower oil are used. The yields for ME of perilla, sesame and sunflower oil are 0.57, 0.61, and 0.30%, respectively, and the amounts of phenolic compounds in ME of corresponding oil are 18.77, 88.64 and $0.05\;{\mu}g$ tannic acid/mg, respectively. $IC_{50}$ for DPPH scavenging activity of perilla, sesame and sunflower oil are 2.12, 1.91, and 3.35 mg/mL, respectively and those for ME of corresponding oils are 0.42, 0.07, and 43.11 mg/mL, respectively. In DPPH assay, the solvent used for oil sample is iso-octane and that for ME is methanol. Superoxide anion scavenging activity of ME of perilla, sesame and sunflower oil tested at 1 mg/mL concentration are 21.10, 13.25, and 3.14%, respectively. Hydroxyl radical scavenging activities of those samples tested at 1 mg/mL concentration are 86.08, 93.30, and 93.17%, respectively. In summary, the refining process seems to remove the phenolic compound during oil processing. Antiradical substances in perilla and sesame oils responsible for scavenging DPPH radicals are present in the methanol fraction, while the antiradical substances in the sunflower oil are in the lipid fraction. DPPH scavenging activity of ME of sesame oil is significantly higher than that of perilla oil (p<0.05). However, superoxide anion scavenging capacity of ME of perilla oils was found to be greater than that of both sesame and sunflower oils (p<0.05).

Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells

  • Hwang, Ji-Young;Lee, Hee-Seob;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study was designed to investigate the protective effect of Sasa borealis leaf extract on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). The butanol fraction from Sasa borealis leaf extract (SBBF) was used in this study because it possessed strong antioxidant activity and high yield among fractions. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant decrease in cell viability, but SBBF treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To determine the protective action of SBBF against AAPH-induced damage of LLC-PK1 cells, we measured the effects of SBBF on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. SBBF had a protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, SBBF showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of SBBF was $28.45{\pm}1.28\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The SBBF also had high hydroxyl radical scavenging activity ($IC_{50}=31.09{\pm}3.08\;{\mu}g/mL$). These results indicate that SBBF protects AAPH-induced LLC-PK1 cells damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging free radicals.

Fucoidan Protects LLC-PK1 Cells against AAPH-induced Damage

  • Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.259-265
    • /
    • 2008
  • This study was designed to investigate the protective effect of fucoidan against AAPH-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). Oxidative stress was induced by exposing of LLC-PK1 cells to the 1 mM 2,2'-azobis(2-amidino propane) dihydrochloride (AAPH) for 24 hr. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant (p<0.05) decrease in cell viability, but fucoidan treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To investigate the protective action of fucoidan against AAPH-induced damage of LLC-PK1 cells, we measured the effects of fucoidan on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. Fucoidan had protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). Furthermore, fucoidan showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of fucoidan was $48.37{\pm}1.54\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The fucoidan also had high hydroxyl radical scavenging activity ($IC_{50}=32.03\;{\mu}g/mL$). These results indicate that fucoidan protects against AAPH-induced LLC-PK1 cell damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging offree radicals.