• 제목/요약/키워드: Superior cervical ganglion cells

검색결과 9건 처리시간 0.025초

인태아 상경신경절 발육에 관한 전자현미경적 연구 (Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses)

  • 김대영
    • The Korean Journal of Pain
    • /
    • 제11권1호
    • /
    • pp.7-22
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length(10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70 mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule-containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest. The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and may serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

인태아 상경신경절 발육에 관한 전자현미경적 연구 (Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses)

  • 김대영;김백윤;윤재룡
    • Applied Microscopy
    • /
    • 제28권2호
    • /
    • pp.139-158
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length (10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule- containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest . The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and nay serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

인태아 상경신경절내 소형의 과립함유세포에 관한 전자현미경적 연구 (Ultrastructural Study on the Development of the Small Granule-Containing Cells in Superior Cervical Ganglion of Human Fetus)

  • 윤재룡;민영돈;남광일
    • Applied Microscopy
    • /
    • 제26권3호
    • /
    • pp.349-367
    • /
    • 1996
  • The development of small granule-containing cell in the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm crown rump length (10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cells, primitive neuroblasts, and unmyelinated nerve fibers together with blood vessels. At 90 mm fetus, the superior cervical ganglion consisted of neuroblasts, satellite cell, small granule-containing cells, and unmyelinated nerve fibers. Two morphological types of the small granule-containing cells in the superior cervical ganglion were first indentified at 90 mm fetus, but were rare. Type I granule-containing cell occurred in solitary and had long processes, whereas type II cells tend to appeared in clusters near the blood capillaries. The granule-containing cells were characterized by the presence of dense-cored vesicles ranging from $150{\sim}300nm$ in diameter in both the cell bodies and processes. Other organelles included abundant mitochondria, rough endoplasmic reticulum, neurotubules, and widely distributed ribosomes. The granule-containing cells had long processes similar to those found in principal ganglionic cells. They could be identified by their content in dense-cored vesicles. The small granule-containing cells increased somewhat in size and number with increase of fetal age. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma and processes of type I granule-containing cells and preganglionic axon terminals were observed. In addition, synaptic junctions between the processes of granule-containing cells and presumed dendrite of postganglionic neuron were also observed from 150 mm onward. On the basis of these features type I granule-containing cells could be considered as interneurons. The clusters of type II granule-containing cells were located in the interstitial or subcapsular portions of the ganglion, and had short processes which ended in close relation to fenestrated capillaries. Therefore it may be infer that clusters of type II granule-containing cells have an endocrine function.

  • PDF

한국재래산양 송과체와 앞쪽목신경절의 관계규명을 위한 면역조직화학적 연구 (Immunohistochemical studies on the relationship between pineal body and superior cervical ganglia of the Korean native goat)

  • 이흥식;이인세;송승훈;윤성태;황인구;이충현
    • 대한수의학회지
    • /
    • 제40권2호
    • /
    • pp.197-211
    • /
    • 2000
  • The pineal body have been known to be affected by superior cervical ganglia, and most of its nerve fibers containing peptidergic neurotransmitters have been considered to be originated from this ganglia. To confirm this relationships, some peptidergic neurotransmitters were identified in both of pineal body and superior cervical ganglia of the Korean native goat, which were divided into two group; breeding season and non-breeding season. The localizations of two catecholamine-synthesizing enzymes; tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH), were investigated by immunohistochemistry in the superior cervical ganglia and the pineal body of adult Korean native goats. Substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and galanin (GAL) were also identified in these organs by immunohistochemical and double immunofluorescent methods. In superior cervical ganglia, immunoreactivities for TH and DBH were confirmed in the same ganglion cells. The immunoreactivites for SP, VIP(only in male), NPY and GAL were identified in both of ganglion cell bodies and nerve fibers in the ganglia. CGRP immunoreactivity, however, was observed only in nerve fibers. Most NPY- and VIP-immunoreactive(IR) ganglion cells also contained TH. SP and TH were colocalized in the cell bodies, but not in the nerve fibers. TH immunoreactivity was shown in almost all of ganglion cells in the superior cervical ganglia. The immunoreactivity for NPY had some seasonal variation and was stronger in breeding season than in non-breeding season. In pineal body, lots of TH-IR fibers were observed throughout the parenchyma including the pineal stalk and most of them also contained DBH. SP- and NPY-IR fibers were also immunostained with TH or DBH. But a few SP- and NPY-IR fibers were not colocalized with TH or DBH. Exceptionally, a bipolar neuron-like cell was observed to be immunostained with NPY in the pineal body. A few CGRP and GAL-IR fibers were observed, while VIP-IR fibers were not present. It is concluded that most TH- and DBH-IR fibers as well as the peptidergic immunoreactive fibers of the pineal body might be originated from the superior cervical ganglia. Some peptidergic immunoreactive fibers, however, might be come from other regions of brain. We also suggest that NPY in pineal body plays a important role for pineal function. The seasonal variation of NPY immunoreactivity indicates that the synthesis and use of NPY may be different between in breeding and non-breeding seasons.

  • PDF

백서의 국소 뇌허혈/재관류로 인한 신경손상에서 상경부 교감 신경절 블록의 급성기 및 장기 보호효과 (The Effects of Superior Cervical Sympathetic Ganglion Block on the Acute Phase Injury and Long Term Protection against Focal Cerebral Ischemia/Reperfusion Injury in Rats)

  • 전혜영;정경운;최재문;김유경;신진우;임정길;한성민
    • The Korean Journal of Pain
    • /
    • 제21권2호
    • /
    • pp.119-125
    • /
    • 2008
  • Background: Cerebral blood vessels are innervated by sympathetic nerves from the superior cervical ganglia (SCG), and these nerves may influence the cerebral blood flow. The purpose of the present study was to evaluate the neuroprotective effect of superior cervical sympathetic ganglion block in rats that were subjected to focal cerebral ischemia/reperfusion injury. Methods: Eighty male Sprague-Dawley rats (270-320 g) were randomly assigned to one of two groups (the ropivacaine group and a control group). In all the animals, brain injury was induced by middle cerebral artery (MCA) reperfusion that followed MCA occlusion for 2 hours. The animals of the ropivacaine group received $30{\mu}l$ of 0.75% ropivacaine, and their SCG. Neurologic score was assessed at 1, 3, 7 and 14 days after brain injury. Brain tissue samples were then collected. The infarct ratio was measured by 2.3.5-triphenyltetrazolium chloride staining. The terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeled (TUNEL) reactive cells and the cells showing caspase-3 activity were counted as markers of apoptosis at the caudoputamen and frontoparietal cortex. Results: The death rate, the neurologic score and the infarction ratio were significantly less in the ropivacaine group 24 hr after ischemia/reperfusion injury. The number of TUNEL positive cells in the ropivacaine group was significantly lower than those values of the control group in the frontoparietal cortex at 3 days after injury, but the caspase-3 activity was higher in the ropivacaine group than that in the control group at 1 day after injury. Conclusions: The study data indicated that a superior cervical sympathetic ganglion block may reduce the neuronal injury caused by focal cerebral ischemia/reperfusion, but it may not prevent the delayed damage.

토끼에서 경부 교감신경절의 무수 에틸 알코올에 의한 화학적 차단 (Chemical Neurolytic Block with Absolute Ethyl Alcohol on Cervical Sympathetic Ganglion in Rabbits)

  • 강유진;서재현
    • The Korean Journal of Pain
    • /
    • 제7권2호
    • /
    • pp.162-169
    • /
    • 1994
  • Blockade of cervicothoracic sympathetic ganglion (stellate ganglion controls pain on face, head, neck, shoulder, upper limbs, and upper chest, including their viscera and sympathetically maintained pain. This procedure also increases blood flow to the above areas and relieves hyperreactivity of sympathetic nervous system. Clinically, repeated stellate ganglion blocks with local anesthetic agent may become difficult with complications such as accidental intravascular or subdural injection, recurrent laryngeal nerve or bracheal plexus paralysis, pneumothorax and edema on injection site. Therefore, at times long-term cervicothoracic ganglion block with neurolytics is necessitated but its applications are prohibited by the critical structures surrounding ganglion. There are also few reports of neurolytic stellate ganglion block. This study was performed to observe the complications, gross changes of surrounding structures, and microscopic findings of ganglion cells after neurolytic block and to certify the possibility of clinical use of neruolytic stellate ganglion block. The unilateral superior cervical sympathetic ganglion of rabbit was blocked with absolute ethyl alcohol 0.4 ml at the level of cricoid cartilage. Normal ganglion was used as a control and 5 animals were sacrificed at each intervals of 7, 15 and 50 days after block. The results were as follows; 1) All experimental animals showed no specific changes of behavior, motor function. No necrotic tissues were present in the block area during the observation period. There were some gross scar tissues along the fascia of muscles surrounding the needle injection site, but gross atrophy of muscles or injured major vessels were not found. 2) Microscopically, structures of normal ganglion of rabbit were very similar to those of humans. Seven days after absolute ethyl achohol injection there were marked edema of ganglion cells and nuclei with irregular nuclear membrane. Some of the ganglion cells lost their nuclei and showed degenerative changes. Fifteen days after block, cell edema were decreased and loss of the Nissl's body was prominant. The ganglion cell structures looked close to normal but the cytoplasm and nucleus were generally contracted 50 days after block. These results suggest absolute ethyl alcohol injection on cervical sympathetic ganglion with above method mainly blocks pre- and post-synaptic fibers and the long-term neurolytic blockade of this ganglion may be possible in rabbits.

  • PDF

상경부교감신경절블록이 백서의 국소 뇌허혈/재관류로 인한 뇌 손상에 미치는 영향 (Effect of Superior Cervical Sympathetic Ganglion Block on Brain Injury Induced by Focal Cerebral Ischemia/Reperfusion in a Rat Model)

  • 이애령;윤미옥;김현혜;최재문;전혜영;신진우;임정길
    • The Korean Journal of Pain
    • /
    • 제20권2호
    • /
    • pp.83-91
    • /
    • 2007
  • Background: Cerebral blood vessels are innervated by sympathetic nerves that originate in the superior cervical ganglia (SCG). This study was conducted to determine the effect of an SCG block on brain injury caused by focal cerebral ischemia/reperfusion in a rat model. Methods: Male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (lidocaine, ropivacaine, and control). After brain injury induced by middle cerebral artery (MCA) occlusion/reperfusion, the animals were administered an SCG bloc that consisted of $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine, with the exception of animals in the control group, which received no treatment. Twenty four hours after brain injury was induced, neurologic scores were assessed and brain samples were collected. The infarct and edema ratios were measured, and DNA fragmented cells were counted in the frontoparietal cortex and the caudoputamen. Results: No significant differences in neurologic scores or edema ratios were observed among the three groups. However, the infarct ratio was significantly lower in the ropivacaine group than in the control group (P < 0.05), and the number of necrotic cells in the caudoputamen of the ropivacaine group was significantly lower than in the control group (P < 0.01). Additionally, the number of necrotic and apoptotic cells in theropivacaine group were significantly lower than inthe control group in both the caudoputamen and the frontoparietal cortex (P < 0.05). Conclusions: Brain injury induced by focal cerebral ischemia/reperfusion was reduced by an SCG block using local anesthetics. This finding suggests that a cervical sympathetic block could be considered as another treatment option for the treatment of cerebral vascular diseases.

인태아(人胎兒) 경동맥체(頸動脈體)의 발육(發育)에 관(關)한 전자현미경적(電子顯微鏡的) 연구(硏究) (Ultrastructural Study on the Development of the Carotid Body in Human Fetus)

  • 윤재룡;박병순;김백윤
    • Applied Microscopy
    • /
    • 제24권1호
    • /
    • pp.11-27
    • /
    • 1994
  • The morphological development of the carotid body was studied by electron microscope in human fetuses from 40mm to 260mm crown rump length (10-30 weeks of gestational age). At 40mm fetus, the carotid body was composed of cluster of primitive glomus cells, primitive supporting cells, unmyelinated nerve fibers, and blood capillaries. In connective tissue between internal and external carotid arteries adjacent to the superior cervical sympathetic ganglion, two types of glomus cells through all prenatal period were found. Dark cells contained a dense cytoplasm with conspicuous large dense-cored granules, whereas light cells had a less dense cytoplasm with dense-cored granules. The light cells contained dense-cored granules that were smaller and less abundant than those in the dark cells. The primitive supporting cells appeared star-shaped with attenuated cytoplasmic extensions intervening between the adjacent glomus cells. Synaptic contact between the axon terminals and soma of the glomus cells were first observed at 40mm fetus. In 80-100mm fetus, the carotid body contained tightly packed collection of glomus cells and supporting cells which surrounded the abundant thin-walled blood vessels. Intercellular junctions between the glomus cells and adjacent cells were commonly seen. Nerve endings on the glomus cells have the form of small boutons and the other from of large calyces. During the second half of the fetal period, the glomus cells were completely enveloped by supporting cells and nerve terminals. At 260mm, the morphological features of carotid body were similar to those of human adult. The result of this study demonstrates that there are differences between the carotid body and aorticopulmonary bodies, especially with respect to their synaptic complexes, abundant blood capillaries, and two glomus cell types.

  • PDF

흰쥐 교감신경 뉴론 N형 칼슘전류의 비활성화에 미치는 칼슘효과 (Role of $Ca^{2+}$ for Inactivation of N-type Calcium Current in Rat Sympathetic Neurons)

  • Goo, Yong-Sook;Keith S. Elmslie
    • 한국의학물리학회지:의학물리
    • /
    • 제14권1호
    • /
    • pp.54-67
    • /
    • 2003
  • N형 칼슘전류의 비활성화 vs 전압곡선은 U형을 보인다 - 즉 칼슘 내향전류의 크기와 비활성화 정도가 어느 정도 일치한다. 이러한 U형 비활성화는 순수한 전압의존성 기전으로 설명되어져 왔으나 칼슘의존성 비활성화 기전 또한 보고되었다. 이 연구에서는 흰쥐 상행 경동맥 결절뉴론을 단일 세포로 얻은 후, whole cell patch clamp technique를 사용하여 N형 칼슘전류를 기록하고, 세포외액의 charge carrier 로서 바륨과 칼슘을 사용하면서, 칼슘이 N형 칼슘통로의 비활성화에 미치는 역할을 알아보았다. charge carrier 로 칼슘을 사용하였을 경우에 바륨을 사용하였을 때에 비하여 비활성화 정도가 증가하였으며 이러한 증가는 세포속 $Ca^{2+}$ Chelator가 11 mM EGTA 로부터 20 mM BAPTA 로 치환되어도 계속 관찰되었다. 비활성화 vs 전압 곡선은 바륨과 칼슘 모두에서 U형이었다. charge carrier 를 칼슘으로 치환시 추가로 유도되는 비활성화 정도는 바륨사용시의 비활성화 정도와 역비례관계를 보여 두 이온에서 같은 기전으로 비활성화가 일어날 가능성을 시사하였다. 이러한 가능성을 지원해 주는 결과로 5초의 긴 저분극 자극시 바륨과 칼슘을 써서 얻은 전류기록은 2중 지수함수로 잘 그려낼 수 있었고, 그 결과 빠른 성분(시정수: -150 ms) 과 느린 성분(시정수 -2500 ms) 를 얻었다. 칼슘이 각각의 성분에 미치는 효과는 각기 달라서 빠른 성분의 amplitude는 증가하였고 느린 성분의 시정수는 빨라졌다. 칼슘에 의해 빠른 성분의 amplitude는 증가하였으므로 이는 더 많은 채널이 빠른 경로로 비활성화되었음을 시사한다. 빠른 성분의 시정수는 변화하지 않았으므로, 이는 비촬성화의 빠른 경로는 칼슘과 바륨에서 같음을 시사하며 즉 비활성화 기전이 칼슘의존성이 아님을 보여주는 증거이다. 그러나 비활성화의 느린 성분은 칼슘에 의해 그 시정수가 빨라졌으므로 칼슘의존성일 가능성이 있다.

  • PDF