• Title/Summary/Keyword: Superheated Temperature

Search Result 65, Processing Time 0.026 seconds

The Effects of the Refrigerant Charge on the Performance of an Air Conditioner with Capillary Tube Expansions (냉매충전량이 모세관 팽창장치를 가진 공기조화기의 성능에 미치는 영향)

  • 최은수;김종배
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • A popular type of residential air conditioner is the split system which has two separate units: indoor and outdoor units During field installation of the split system, the potential exists for not setting the charge exactly to the manufacturer´s specifications. The objective of this study is to investigate the effects of the refrigerant charge on the performance of the air conditioner. An air conditioner with capillary tube expansions was tested for various refrigerant charges. The results indicated that the more charge resulted in the more flowrate of the refrigerant. The flowrate of the refrigerant was one of the most important factors to understand the e(sects of the charge on the performance of the air conditioner with capillary tube expansions. Under-charge results in wide region of superheated vapor of the refrigerant in the evaporator, while over-charge results in high temperature of the liquid refrigerant in the evaporator.

Performance Analysis of an ORC System for Two Different Working Fluids (두 종류의 다른 작동유체가 ORC 시스템의 성능에 미치는 영향)

  • Chang, Hong-Soon;Song, Yeong-Kil;Han, Young-Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.413-417
    • /
    • 2013
  • The organic Rankine Cycle (ORC) uses a kind of refrigerant as a working fluid that evaporates at relatively low temperature, as the Rankine Cycle uses superheated steam as the working fluid. A small scale ORC test bench was installed, and two different working fluids (R245fa and R134a) were injected into the test bench. The test bench was in operation with the two different working fluids under the same conditions. The effects against the system performance from the different working fluids were analysed, and root causes were identified. Other factors reflecting the power generation efficiency were also found. A conclusion was drawn, that R245fa makes the system perform better, than R134a.

Development of Algorithm to Predict the Superheat-limit Explosion(SLE) Conditions of LNG Using Continuous Thermodynamics (연속열역학을 이용한 액화천연개스(LNG)의 과가열약체 폭발현상 예측에 대한 연구)

  • Shin, Goun-Soup;Kwon, Yong-Jung
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.5-13
    • /
    • 1995
  • Natural gas, which is getting more important as a fuel, should be liquefied and shipped in a special tank. During transportation, a spill of liquefied natural gas(LNG) could occur by a collision or even an accident. As a result, violent explosion called the superheat-limit explosion(SLE) can take place in some cases, unexpectedly. Such explosion may result from the formation of a superheated liquid which has attained the superheat-limit temperature when hot(water) and cold(LNG) liquids come into contact. Natural gas mixtures can be considered as discrete light components plus continuous heavy fractions where several continuous distribution function can be adopted. This work is aiming at prediction of the superheat-limit explosion condition by suing continuous thermodynamics development of algorithm to predict.

  • PDF

INNOVATIVE INDUCTION-HEATED HIGH-TEMPERATURE STEAMER USING VOLTAGE-FED HIGH-FREQUENCY RESONANT INVERTER

  • Guo, Bin;Nakamizo, Tetsuo;Nishida, Katsumi;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.586-591
    • /
    • 1998
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction-based fluid heating appliance using voltage-fed series capacitor-compensated load resonant high-frequency IGBT inverter with a phase-shifted PWM and a power factor correction schemes. Its operating characteristics in steady-state and dynamic state are illustrated including unique features and evaluated on the basis of its computer simulation and experimental results of 10kw breadboard appliance developed for hot water producer and superheated steamer.

  • PDF

Studies on the heat performance and stability for multi spray type desuperheater of the power plant (발전소용 다중 스프레이형 과열저감기의 열성능 및 안정성에 관한 연구)

  • Cho, Nam-Cheol;Lee, Deok-Gu;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.185-190
    • /
    • 2011
  • The important use of the desuperheater(multi spray type) changes the superheated steam into the saturated steam. It is more efficient and suitable for using the process. Also, it is more convenient and stable regarding the process temperature control. In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the multi spray type desuperheater of the power plant. Computational analysis was used to calculate the thermal stress, and the vibration test was done to evaluate the structural stability. This paper is verified by analysis that water spray nozzle(${\phi}=28mm$) shows the best ability. The results show that structural stability of the desuperheater under the real operating condition was proven.

  • PDF

Dynamic Analysis of Cool Thermal Storage Air Conditioning System (빙축열 에어컨의 동적 사이클 해석)

  • Koh, Jae-Yoon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • In this study, dynamic characteristics analysis of AC system is investigated using a cool thermal storage system. A analysing program for cool thermal storage AC system is developed. The performances are studied by several variables and dynamic characteristics. Comparing the result at conventional operation condition with that at the condition using ice storage system, this study showed the effects of the sub cooled degree, superheated degree, efficiency of compressor and evaporating temperature. At the condition using thermal storage system, the thermal storage process was operated during midnight being not needed the cooling of the AC unit through the continuous running of the condenser. The refrigerant was sub-cooled using stored energy after being discharged from the air source condenser during the daytime. The COP was increased owing to the sub-cooling of refrigerant during daytime, thus the power consumption was effectively decreased.

THERMAL RESISTANCE OF BACTERIAL SPORES TO DRY HEAT (세균포자의 건열에 대한 열저항성)

  • HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.145-149
    • /
    • 1977
  • Thermal resistance of dried bacterial spores against dry heat was determined. Spare suspensions of Bacillus subtilis var. niger ATCC 9372, Bacillus stearothermophilus Oxoid Code BR 23 and Clostridium sporogenes ATCC 19404 were located on aluminium strips, dried in electric oven under vacuum at room temperature for 10 minutes. The aluminium strips were laid in the middle of gas flow (hot air and superheated steam) with the velocity of 6 m/sec and heated at $120^{\circ}C$ for 180 seconds. The calculated D-values showed that there were no remarkable differences in the heat resistance of bacterial spares between $R.H.\leqq0.012$ and R. H.=0.51. Furthermore the thermal resistance of B. subtilis spores to dry heat was greater than that of B. stearothermophilus.

  • PDF

Evaporator Superheat Control of a Multi-type Air-conditioning/Refrigeration System (멀티형 공조/냉동시스템의 증발기 과열도 제어)

  • Kim, Tae-Sub;Hong, Keum-Shik;Sohn, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.712-717
    • /
    • 2001
  • This paper investigates the control problem of evaporator superheat, i.e., the difference between the temperature of the refrigerant at the entrance region of an evaporator and that at the exit region, for multi-type air-conditioning/refrigeration systems. Mathematical equations describing the characteristics of compressor, condenser, evaporator, and electronic expansion valve are first derived. Then, the transfer functions from the current input of the electronic expansion valve to wall temperatures of evaporator tube at two-phase region and superheated region, respectively, are derived. The stability and performance of the closed loop system with a PI controller are analyzed by Nyquist stability criterion. Simulation results are provided.

  • PDF

Development of Simulation Program for Multi-Air conditioner (멀티에어컨의 성능해석 프로그램 개발)

  • Jeong, B.Y.;Koh, J.Y.;Park, B.D.;Yim, C.S.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • In this study, theoretical simulation method for the steady state characteristics of a refrigeration cycle which consists of one condenser and multi-evaporator (Multi-air conditioner) is presented. The simulation was performed for a typical multi-air conditioning system consisted one outdoor unit with air-cooled condenser, compressor, linear electric expansion valve and bypass circuit and connected three-evaporators (three indoor units). The simulation results are good agreement with those of experiments within 5 $\sim$ 10% at the given system operation conditions which are condensing pressure, evaporating pressure, sub-cooled degree of condenser, superheated degree, discharge temperature of compressor and pulse of linear electric expansion valve.

  • PDF

Frequency Response Characteristics of Air-Cooled Condenser in Case of Inputting Various Disturbances

  • Kim, Jae-Dol;Oh, Hoo-Kyu;Yoon, Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.14-28
    • /
    • 2000
  • The frequency response characteristics of a condenser were numerically studied for the control of refrigeration and air conditioning systems. The important parameters, such as the refrigerant flow rate, refrigerant temperature, air velocity, and air temperature at the condenser inlet, were analyzed. Superheated vapor, two phase, and subcooled liquid domain in condenser can be described by using the energy balance equation and the mass balance equation in refrigerant and tube wall, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to disturbances can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Block diagrams were made based on the analytic transfer function; dynamic responses were evaluated in Bode diagrams on the frequency response. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. The results may be used for determining the optimum design parameters in actual components and entire systems. Also, the mathematical models, frequency response may be used to help understanding, evaluate optimum design parameters, design control systems and determine on setting the best controller for the refrigeration and air-conditioning systems.

  • PDF